
CMfe
Center for Multisource Information Fusion

Research on an Enabling Infrastructure for Distributed
Simulation

Kai Harth

Report No. CMIF 3-01

March 2001
DISTRIBUTION STATEMENT A

Approved for Public Release
Distribution Unlimited

Acknowledgement: This research project was supported by Grant F49620-99-1-0090
from the Air Force Office of Scientific Research (AFOSR) and technical direction was

provided by staff from the Air Force Flight Test Center (AFFTC) at Edwards AFB,
California; the Center for Multisource Information Fusion is grateful to both agencies and

their staffs for the support and guidance associated with this project.

* / Ä3Ö3I ll»iw»f»Mar at Buffalo
*ih$$MM IfcfcfiSifyißfÄw Äril

CALSPAN-UNIVERSrTY AT BUFFALO RESEARCH CENTER. INC.

20010625 113

REPORT DOCUMENTATION-PAGE
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time
and maintaining the data needed, and completing and reviewing the collection of information. Send comments reg
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Infor
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-01»

AFRL-SR-BL-TR-01-

1. AGENCY USE ONLY (Leave blank) REPORT DATE
March 2001

3. REPORT TYPE AND DATES COVERED
Final Report (1/1/99-12/31/00)

4. TITLE AND SUBTITLE
Research on an Enabling Infrastructure for Distributed Simulation

AUTHORS
Kai Harth

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Calspan-UB Research Center, Inc.
P.O. Box 400
4455 Genesee Street
Buffalo, New York 14225

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Office of Scientific Research
801 N. Randolph Street, Room 732
Arlington, VA 22203-1977

11. SUPPLEMENTARY NOTES
None

6. FUNDING NUMBERS

G- F49620-99-1-0090

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMIF 3-01

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Pubilcly releasable; unlimited distribution NOTfCEO

HAS6EE

13. ABSTRACT (Maximum 200 words)
Distributed simulation plays an important role for the military modeling and simulation community. Various reasons support the integration of
independent simulators into distributed simulation federations. Among these are the increased computational power becoming available, and
the possibility of reusing already existing sophisticated software simulations for new purposes, ie a leveraging motivation.The US Department
of Defense has devised its own standard for simulation reuse and interoperability, the High Level Architecture (HLA).The purpose of this
report is firstly to analyze some of the issues that are related to distributed simulation in general. These issues include, for example,
concepts of simulation timing or issues of simulation interoperability. Secondly, a close look has to be taken at the HLA and its
implementation, the Run Time Infrastructure RTI, to get a better understanding of the capabilities and the functioning of this tool. One goal
of the effort reported on is to evaluate the HLA's particular applicability for the simulation of distributed data fusion and for military
development, testing and evaluation (DT&E). Thirdly, a concept is devised for making use of the rather-complex HLA/RTI tool for small-scale
university-type distributed simulation research. This is done by implementing an easy-to-use programming environment, based on HLA, and
necessary control and support tools. In this report, this is called the "CMIF HLA Environment", as the work was conducted at the State
University of New York's "Center for Multisource Infromation Fusion or CMIF.As the last part of this work, a first proof of concept
experiment/demo is done to validate the implemented software. This is realized by constructing a demo application, a distributed simulation
experiment with several components that make use of all the features and mechanisms of the CMIF HLA Environment.

14. SUBJECT TERMS
Distributed Simulation, Distributed Data Fusion, Laboratory Software

17. SECURITY CLASSIFICATION
OF REPORT

U

18. SECURITY CLASSIFICATION
OF THIS PAGE

U

19. SECURITY CLASSIFICATION
OF ABSTRACT

U

NSN 7540-01-280-5500

15. NUMBER OF PAGES
214

16. PRICE CODE

20. LIMITATION OF ABSTRACT
UL

Computer Generated STANDARD FORM 298 (Rev 2-89)
Prescribed by ANSI Std 239-18
298-102

RESEARCH ON AN ENABLING
INFRASTRUCTURE FOR

DISTRIBUTED SIMULATION

by

Kai Harth

February 1, 2001

A thesis submitted to the
Faculty of the Graduate School of the

State University of New York at Buffalo
in partial fulfillment of the requirements for the

degree of
Master of Science

Department of Mechanical and Aerospace Engineering

Acknowledgements

My pursuing of the degree of Master of Science would have been out of question

without the help and support of many generous people. I am deeply grateful. The

following list is without order and makes no claim to completeness:

The German Fulbright Commission, for giving me the chance to come to the United

States for graduate studies in the first place.

Professor James Llinas, my advisor. Despite his workload, he never failed to support

me during eventual technical and motivational difficulties. His funding gave me the

chance to extend my stay and even return to Buffalo twice. The CMIF lab became

something like a second home.

The Department of Mechanical and Aerospace Engineering and its faculty, for pro-

viding an excellent and challenging academic environment.

My committee members, Professor Crassidis and Professor Mook, for taking their

time to read through all of this.

My family and friends, for always encouraging and supporting me, and for letting

me go at all.

Contents

1 Introduction 2

1.1 Background 2

1.2 Purpose of this work 4

2 Issues of Distributed Simulation 6

2.1 Motivation for Distributed Simulation 6

2.2 The Role of Time 8

2.3 Multi-Threading 10

2.4 Time-Stepped versus Event-Based 13

3 High Level Architecture 15

3.1 Overview 16

3.2 Simulation Interoperability and the Federation Development Process . 18

3.3 The HLA Object Models 19

3.4 Run Time Infrastructure 21

li

CONTENTS iü

3.5 The RTI and Timing 23

3.6 Applications for the RTI 24

4 The CMIF HLA Environment 28

4.1 Purpose of the CMIF HLA Environment 28

4.2 The Federation Object Model 31

4.3 The CMIF Control Center 34

4.3.1 Overview 34

4.3.2 Class Structure 35

4.3.3 Graphical User Interface 37

4.4 The Experiment Participant 42

4.5 Implementation Remarks 44

5 Programmer's Guide to CMIF HLA 46

5.1 Download and Installation of the RTI 47

5.2 Installation of the CMIF HLA Environment 50

5.3 Implementing an Application 51

5.3.1 Programming Toolkit Overview 52

5.3.2 An Example: ContactGenerator and TacticDisplay 57

5.4 Putting Everything to Work:

A Simulation Run 65

5.5 Practical Remarks 71

CONTENTS iv

6 Conclusion 73

6.1 Assessment of Results 73

6.2 Future Work 76

A The RTI Configuration File 78

B The FED File CMIF_HLA_Environment.fed 80

C A Sample Experiment Configuration File 85

D Sourcecodes of the Java classes 87

D.l The package CMIFControlCenter 87

D.l.l The Class CMIFControlCenter.java 87

D.1.2 The Class CMIFControlDisplay.java 95

D.1.3 The Class CMIFExperimentManager.java Ill

D.I.4 The Class RTIControlModule.java 121

D.1.5 The Class RTIControlModuleFedamb.java 140

D.2 The package CMIFExperimentParticipant 146

D.2.1 The Class CMIFExperimentParticipant .Java 146

D.2.2 The Class CMIFExperimentParticipantFedamb.java 169

D.3 The package DemoApplication 175

D.3.1 The Class ContactGenerator.java 175

D.3.2 The Class GeneratorPanel.java 183

CONTENTS v

D.3.3 The Class TacticDisplay.java 187

D.3.4 The Class TacticDisplayPanel.java 195

D.4 The package util 200

D.4.1 The Class DebugHelper.java 200

D.4.2 The Class ExperimentFileHandler.java 203

D.4.3 The Class SwingWorker.java 209

List of Figures

1.1 Purpose of this work 4

2.1 Distributed simulation 7

2.2 Overview over different timing concepts 10

2.3 Depiction of a single thread program execution 11

2.4 Multithreading 11

3.1 A functional view of the High Level Architecture 17

3.2 Functional view of the Run Time Infrastructure - RTI 21

3.3 Possible future scenario for range testing at Edwards AFB 25

4.1 Conceptual view of the CMIF HLA Environment 29

4.2 The CMIF HLA Environment FOM 32

4.3 Class structure of the control center 36

4.4 Screenshot of the complete control center user interface 37

4.5 The control center Experiment and Phases menus 39

4.6 Left side of the control center user interface 40

VI

LIST OF FIGURES vii

4.7 The experiment participants information section 41

4.8 An overview over the experiment participant concept 43

5.1 Sample configuration file .bashrc 48

5.2 Directory structure of the CMIF HLA Environment installation ... 50

5.3 Screenshot of the TacticDisplay application user interface 58

5.4 Screenshot of the ContactGenerator application user interface 60

5.5 Structure of the demo application 65

5.6 The rtiexec terminal window 67

Abstract

Chapter 1

Introduction

1.1 Background

The importance of computers, especially computer simulation, in today's technical

world is continously increasing. It is widely accepted, that the use of computer

simulation can save valuable time and costly resources. This is also true for the realm

of military applications, where simulations are used over a wide range, from training

up to research and development (R&D). Over time, two situations have evolved:

Firstly, simulation scenarios tend to become more and more complex. And secondly,

a large number of sophisticated and specialized simulators are already available and

a reuse of these software progams is desirable. This lead to the field of distributed

simulation, where different simulation programs are interconnected and cooperate

with each other to form a new simulation application. Although the approach of

distributed simulation is promising and offers a solution to both problems -increasing

CHAPTER 1. INTRODUCTION 3

complexity and the desire for reuse- it also raises a lot of new questions and issues:

Interface and communication standards are needed and general aspects of simulation

interoperability need to be dealt with.

This work is part of the research efforts of the Center for Multisource Information

Fusion, CMIF. The CMIF, which is headed by Professor James Llinas, Ph.D., is a

research facility at the State University of New York at Buffalo. Part of the research,

which is done, is concerned with distributed data fusion, a field that is closely related

to that of distributed simulation.

The data fusion research has lead to a close cooperation between the CMIF and the

US military, more specifically, the Air Force Electronic Warfare Flight Test Range

Facility at Edwards Air Force Base. There, Test and Evaluation (T&E) experiments

are conducted with electronic warfare components, on in-flight platforms as well as in

laboratory test-stands. The test ranges -Electronic Combat Range and Nellis Range

Complex- are instrumented and populated with high-fidelity, manned or unmanned

threat simulators. Additional emitter-only threat simulators are used to provide high

signal density, typical of operational electronic warfare environments.

The US military has its own standards for distributed simulation. Two older ones,

DIS1 and ALSP2 are being phased out now. Their successor is the High Level Ar-

chitecture (HLA) which features new and improved capabilities. In this treatise, the

HLA will be analyzed and then a concept will be devised how to utilize the HLA in

the form of a lab environment for distributed data fusion research at CMIF. Also, the

implementation of this concept, the "CMIF HLA Environment", will be introduced.

1DIS-Distributed Interactive Simulation
2ALSP-Aggregate Level Simulation Protocol

CHAPTER 1. INTRODUCTION

1.2 Purpose of this work

The initial motivation for this project was to analyze future scenarios for the Ed-

wards AFB Range Testing Facility. The question is: How will distributed simulation

contribute to and enhance testing of electronic warfare components? To be able to

answer this, it was first necessary to become more familiar with the general aspects of

distributed simulation. The High Level Architecture (HLA) then came into focus be-

cause it is the mandatory framework for all future military simulations. After a closer

look was taken at the HLA and its implementation, the Run Time Infrastructure, it

became clear that this was a tool with great capabilities. It would also be desirable

to utilize it for the distributed data fusion research done by CMIF in general. Thus

the demand for a programming environment for the CMIF lab arose and the main

project focus shifted to the concept-development, implementation and testing of the

"CMIF HLA Environment".

Study Distributed Simulation
^

Analyze Functionalities and Capabilities
Of the DoD High Level Architecture

<>
^> -^L>

Evaluate Applicability of Evi'uale CMIF needs for
the High Level Distributed Simulation

. Architecture for. r— . ±* . : .

Scenarios of EW ■ Implement an easy-to-use
. Range Testing and simulation environment for

Evaluation ; the CMIF lab, based on

 ► Edwjrds AFB |

Figure 1.1: Purpose of this work: Two separate branches evolve but mutual benefits
exist.

CHAPTER 1. INTRODUCTION 5

As depicted in figure 1.1, this leads to separate outcomes of this project which are

not too apparently related to each other. The to be implemented lab environment for

distributed simulation will be tailored to the needs of CMIF. Not neccessarily will it

be applicable in other settings too. Nevertheless, the hands-on experience gained in

dealing with distributed simulation in general and the Department of Defense High

Level Architecture in particular will definitely be valuabe for further studies. Thus,

the relevance of this research, and even the CMIF software, for the work done at

Edwards AFB becomes evident.

The proceeding of this project was not fixed from the very beginnig, but rather did

the work evolve over time, after more and more of the aspects and problems that are

related to the High Level Architecture and to the distributed simulation field became

clear.

Chapter 2

Issues of Distributed Simulation

In the following, after discussing the motivation for distributed simulation in general,

several issues related to the overall field will be introduced. At this time, they might

seem more or less unrelated to each other. But for the subsequent chapters, these

topics will be needed as background information.

2.1 Motivation for Distributed Simulation

Previous research done by CMIF has already dealt with issues of distributed simula-

tion. Software was implemented to simulate and study the behaviour of distributed

data fusion nodes, multi-agent teams and the like. But always, the aspect of distribu-

tion itself had only been emulated. This meaning, the software "pretended" to deal

with separate and independent components while, in fact, the whole simulation was

carried out in one single computer program, one single process.

CHAPTER 2. ISSUES OF DISTRIBUTED SIMULATION

Figure 2.1: The step from emulated distributed simulation to "real" distributed sim-
ulation

Now the next logical step would be to try to do similar experiments in a "real"

distributed environment, as it is suggested in figure 2.1. The components of one

simulation experiment would run in various processes on different computers, con-

nected by a local area network (LAN). But obviously this will introduce a number of

disadvantages. Mainly, making this transition will lead to increased complexity due

to

• the neccessity of dealing with inter-process and inter-platform communications

and

• synchronization and coordination issues between components.

At the same time though, also advantages arise with the transition to simulation

that is in fact physically distributed:

• Increased computational power becomes available by utilizing the resources of

several computers at a time.

CHAPTER 2. ISSUES OF DISTRIBUTED SIMULATION

• Due to the modular character, the reuse of components (especially support

tools etc.) becomes possible and will, after an initially increased effort, make

development more effective from project to project.

• Dealing with the additional problems of distributed simulation, and the result-

ing experience gain, will lead to knowledge advantages for subsequent work.

This makes clear, that the mentioned disadvantages can at the same time be viewed

as positive aspects. And anyway, since real world systems are always distributed in

one respect or another, there is no use in trying to get around the difficult issues that

distribution entails. On the contrary: It is desirable to gain the expertise in deal-

ing with distributed simulation while working in a small, manageable environment.

Those lessons learned will then be readily available for subsequent and more advanced

projects.

2.2 The Role of Time

When simulation components are implemented, which are supposed to work together

in some kind of distributed simulation, among other things, a timing scheme has to

be agreed upon. Timing can be handled in several different ways (ascending order of

complexity):

Time is irrelevant. This would be true rather for technical simulations like FEM.

Time is relevant, but synchronization is only internal That means, although

time is an integral part of the simulation behaviour, simulation time bears no

CHAPTER 2. ISSUES OF DISTRIBUTED SIMULATION 9

relation to real-time. Also, the simulation-speed or -rate can vary at the simu-

lation's own discretion. An example would be the Canadian military simulation

software CASE_ATTI [CasOO], which is also used in the CMIF lab. It features

time synchronization between its internal components, but proceedes with the

simulation execution always as fast (or slow) as system performance allows it.

Synchronized to time scale but slower than real-time: Each time step in the

simulation is of equal length if measured in real-time, but simulation time pro-

ceeds slower.

Real-time synchronized: The simulation is fully following the real-time scale. This

concept is of special importance, because only in this case can "Live Players"

or real components be integrated into the otherwise virtual simulation environ-

ment1.

Faster than real-time: If computing resources allow it, "fast-forwarding" through

a simulation saves time, of course.

Figure 2.2 depicts these different approaches. It also introduces a scaling factor that

relates the last three possibilities to each other, using the following formula:

/-, "Sim.
DC

''real

where Sc represents a scaling factor. If Sc < 1, we get slower than real-time behaviour,

Sc = 1 represents real-time synchronization, and So 1 leads to "fast forward".

1 Exceptions exist: Sometimes pilot training simulators are operated faster than real-time to

induce a higher level of stress to the tested person.

CHAPTER 2. ISSUES OF DISTRIBUTED SIMULATION 10

mp- fimingapd|l

F|nterna|^ncpronisation*^>
y büt ntfrelä^ön'to real'time^

fSynchfpnizedlo time scale;•bi^&.rvL^-
Islöwef^thän jeal timef||jj^r^;^|fe4^^—-

-■sw

i Frully-real time sync^röKizW^i^^J^^TSc = 11

fFaster than real time^"Ä^^^^ra^Äf^KSc > 1

Figure 2.2: Overview over different timing concepts

Before finally applying one of these three concepts for a distributed simulation, it has

to be made sure, that the chosen scaling factor Sc is feasible for the given simulation

workload and system resources. Otherwise, a simulation component might fall behind,

timing might be lost and simulation results would then be rendered useless.

Another technical aspect related to simulation timing, is the question of timing

control. It has to be determined, if one component will be responsible for the timing

of others ("Master-Slave") or if each component takes care of timing itself.

2.3 Multi-Threading

Another important aspect that arises when dealing with advanced simulation, is multi-

threading. In the programming world, the term thread is used for a part of a program

that progresses with its flow of control basically on its own. Obviously, the term

CHAPTER 2. ISSUES OF DISTRIBUTED SIMULATION 11

became necessary only after computer systems and advanced programming languages

became able to deal with more than one thread at a time. This is where multi-

threading comes into play. Figures 2.3 and 2.4 show the basic difference: A computer

program has to complete different tasks, and in the single-thread situation, this has

to be done one task after the other. In the multi-threaded setting, in contrast, each

task can be worked on in its own thread of execution.

Figure 2.3: Depiction of a single thread program execution

Figure 2.4: A program with multiple threads executing in parallel.

CHAPTER 2. ISSUES OF DISTRIBUTED SIMULATION 12

Threads can be used on a user-level, i. e. in application development, as well as on

a system level (kernel threads).

The main advantages that multi-threading provides over single threads, are the

exploitation of latency and concurrency. This means, that while with a single thread

inherent waiting time of different tasks will add up, with multi-threading, latencies

in one thread will be utilized for the execution of another task.

It must be mentioned, that multiple threads on a "normal" computer are never really

parallel. They are just broken down into small segments on the system level. The

execution of these segements is then switched between those belonging to different

threads, making the tasks appear to be worked on in parallel. Of course, this is

different with parallel-processor computers and with parallel computing systems.

As the two graphs suggest, difficulties with multi-threading arise because in most

cases, threads are never totally independent from each other. They might access a

pool of common data or directly interact with each other. The following problems

come into play:

Data consistency: When different threads manipulate the same data, extreme cau-

tion caution has to be exercised. It has to be defined who is allowed to do what

and at which point in time.

Dead-locks: Usually threads might interact with each other and thus affect their

respective behaviour. Careful considerations have to be made about all possible

states that a program's task might be in when an interaction is attempted, to

avoid illogical behaviour or dead ends in the execution. For example: Thread

CHAPTER 2. ISSUES OF DISTRIBUTED SIMULATION 13

one is waiting for input from thread two to proceed, and vice versa.

The mention of all these issues is not only important because the Run Time In-

frastructure itself is highly multi-threaded and also the implementation of the CMIF

HLA Environment will make use of several threads. Similarily, the concepts, ad-

vantages and disadvantages also apply to a multi-process situation and even to a

multi-computer scenario of distributed simulation. In these cases, the same consid-

erations about data consistency and possible dead-locks have to be made to ensure a

smoothly performing system. That means, although the application developer who

chooses to use the RTI and the CMIF HLA Environment maybe does not have to

worry too much about internal threading issues of the provided software, he still has

to keep in mind the same lurking problems and plan ahead to avoid them, also on an

application level.

2.4 Time-Stepped versus Event-Based

This section addresses another central aspect of computer simulation. The question

in this case is: What is the driving factor behind a simulation's proceeding, what

stimulates the simulation to do its actual work? This leads to the following distinc-

tion2:

"Time-Stepped": In this case, time is the driving factor behind the simulation.

Technically, the time is progessing in certain increments, and within each step,

certain tasks are processed.

2 The two terms are taken from the HLA terminology.

CHAPTER 2. ISSUES OF DISTRIBUTED SIMULATION 14

"Event-Based": External input in the form of events is driving the simulation.

That means, the simulation reacts rather than acts.

In reality, simulation applications represent in most cases a hybrid combination of

both behaviours. For example, a military flight simulator which mainly progesses

with the simulation along the time-line, but also reacts to event-like pilot input or

external events like "collision" or "missile fired".

This way of looking at simulation behaviour is not necessarily limited to distributed

simulation. But it is with distributed simulation, especially in the case of hybrid

behaviour, that matters can get very complicated.

Chapter 3

The Department of Defense High

Level Architecture

The best way to start an introduction to the High Level Architecture is to quote

directly from the Department of Defense (DoD):

"The High Level Architecture (HLA) is a general purpose architecture

for simulation reuse and interoperability. It was developed under the

leadership of the Defense Modeling and Simulation Office (DMSO) to

support reuse and interoperability across the large number of different

types of simulations developed and maintained by the DoD." [DefOOb]

In what follows, a synopsis to the HLA will be given. Because plenty of detailed

documentation about the HLA is available, and because a simple repetition of all this

material was not desired, the overview will be kept brief. For further study the reader

may be referred to [DefOOb] and [JMP+99] and the DMSO website [DefOOg].

15

CHAPTER 3. HIGH LEVEL ARCHITECTURE 16

3.1 Overview

The High Level Architecture (HLA) is a software architecture for distributed sim-

ulation. It can be used by developers to create simulation applications. When the

HLA concept was developed, this was done before a background of a diverse en-

vironment that required extensive flexibility together with a minimum number of

constraints. Military simulation applications cover a vast spectrum, from highly ag-

gregated, discrete event simulators for the training of whole battle staffs to individual

training simulators. And not only the training community relies on simulation, also

the research and development communities have their own requirements for simula-

tion applications.

So the HLA was developed to be flexible enough to cover this diverse set of simulation

systems and sophisticated enough to embrace also the next generation of simulations

[JMP+99]. The initial baseline definition of the HLA was done in 1995.

The HLA provides a technical framework to the developers that features a set of

capabilities to support the design and execution of distributed simulations, composed

of multiple simulation applications. In this context two key terms for dealing with

the HLA are "Federation", for the integration of a set of interoperating simulation

applications and "Federate" for the single simulation component that participates

in a federation. A participant in a federation could also be an interface with a live

system, like a flight simulator or a telemetry unit for experiments on a testing range.

In figure 3.1 we can see a functional view of the High Level Architecture. As a

technical framework architecture, it enables the integration of simulation federates,

CHAPTER 3. HIGH LEVEL ARCHITECTURE 17

Interfaces to il
Live Playersj w /^

Federation Management Data Distribution Management
Object Management Declaration Management

Time Management Ownership Management

Figure 3.1: A functional view of the High Level Architecture

which can be genuine computer simulators, interfaces to "live" components and also

support tools, into federations. This is done by providing definitions for:

• Federation Management

• Data Distribution Management

• Object Management

• Declaration Management

• Time Management

Ownership Management

CHAPTER 3. HIGH LEVEL ARCHITECTURE 18

3.2 Simulation Interoperability and the Federation

Development Process

When considering simulation interoperability, a distinction has to be made between

two aspects of this field ([JMP+99]):

Technical interoperability refers to the issues related to actually making a feder-

ation of distributed and independent simulators work together.

Substantive interoperability addresses issues that impact on the ability of simu-

lations to inter-operate in a coherent and logically meaningful way.

For example, the first item would include the definitions of inter-process and inter-

platform communications, whereas the latter one would deal with questions like what

data actually has to be exchanged between federates. Obviously, the two aspects are

closely intertwined: Without interoperability on the technical level, the best substan-

tive concepts cannot be put to work. At the same time, technical interoperability

alone, without the substantive interoperability, is meaningless.

The HLA not only provides the developers community with the means to address

the technical interoperability challenges, but also defines a process to organize and

document the whole life cycle of the creation and execution of an HLA federation:

The Federation Development and Execution Process, FEDEP. It comprises six steps:

Step 1: Define Federation Objectives

Step 2: Develop Federation Conceptual Model

CHAPTER 3. HIGH LEVEL ARCHITECTURE 19

Step 3: Design Federation

Step 4: Develop Federation

Step 5: Integrate and Test Federation

Step 6: Execute Federation and Test Results

3.3 The HLA Object Models

The architecture defines several object models, to standardize the development of

HLA compliant software.

Federation Object Model (FOM): There is one FOM per federation and it in-

troduces all shared information (i.e. Objects, Interactions). It also deals with

inter-federate issues, e. g. data encoding schemes.

Simulation Object Model (SOM): The standard requires one SOM for each fed-

erate in the federation. It focuses on the federate's internal operation and

describes salient characteristics.

Management Object Model (MOM): It defines all objects and interactions used

to manage a federation.

Since especially the Federation Object Model will be of importance later in

this work, we will go a little more into the details at this point. The first step to the

implementation of HLA compliant software is the definition of the FOM. That means,

everything that shall later be present in the "simulation space", has to be mapped

CHAPTER 3. HIGH LEVEL ARCHITECTURE 20

to the generic High Level Architecture constructs of Objects and Interactions. Both

Objects and Interactions can have attributes to further refine the definition. Becauses

an attribute to an Object can itself be an Object again, this leads to an object-oriented

structure, where in the end everything is broken down to the level of generic simple

data types (such as String, int or byte).

Both Objects and Interactions are of a similar nature. The difference is, that

while Objects persist within the simulation space for a certain time (e. g. "Airplane",

"Tank"), Interactions are instantaneous, non-persistent events (e.g. "Collision", "Ra-

dio Transmission").

The definition of the Federation Object Model is an enabling step, because it permits

the sharing of information and the interaction between the federates, that will later

be implemented. But it is also limiting, because only through the view defined by

the FOM can federates "see" the simulation space and its other components.

To standardize the definition of the mentioned object models, the Object Model

Template (OMT) exists. The OMT provides a common method for representing and

documenting HLA object model information. Although the ideas of the Object Model

definition process will be used all throughout this work, there was not no time to go

through the detailed proceeding of using the OMT for definition and documentation.

CHAPTER 3. HIGH LEVEL ARCHITECTURE 21

3.4 High Level Architecture in real life: The Run

Time Infrastructure RTI

The HLA serves as a theoretical framework, defining all necessary standards for the

implementation of distributed inter-operating simulations. But there also exists an

implementation that puts these concepts and interface specifications to work and

provides common services to simulation systems -the Run Time Infrastructure, RTL

. IBDK'

V
Inter-Process Communications

Figure 3.2: Functional view of the Run Time Infrastructure - RTI

The RTI is provided to the developer as a software package that contains all nec-

essary components to implement an HLA compliant simulation application and then

to run whole simulation federations. The main components of the software package

are:

• Class libraries that allow the developer to access the RTI services from his

programs.

Core system programs, through which all RTI inter-process communications

CHAPTER 3. HIGH LEVEL ARCHITECTURE 22

and interactions are handled. Concretely, these are the RTI background process

rtiexec and the federation execution background process f edex.

Figure 3.2 shows, how these components work together: Linked by inter-process

communications, we have several federates who access the RTI services by using the

RTI programming interface1. The figure reveals nothing about a possible spatial

distribution, though. All the depicted components could be on different computers

and operating systems. In that case, everything is interconnected by the local are

network (LAN). Internally the RTI relies on TCP/IP for communications.

One of the central goals of the HLA, simulation interoperability, is ensured on a

technical level by providing platform interoperability through the RTI. Currently,

the runtime software is available for eleven different operating systems (e.g. Sun

Solaris, Windows95, 98 and NT, Irix, Linux,...) and a variety of programming

languages (C++, Java, Corba,...). A simulation application that is built on one ope-

rating system/programming language pair is technically able to join any federation,

no matter which systems and platforms the other components rely on.

All RTI software, documentation and even supporting tools, is available from the

Defense Modeling and Simulation Office (DMSO). It can be downloaded via the in-

ternet from their download server [DefOOa]. But because this is military material,

although not classified, some restrictions apply: Before being able to download and

use HLA related material, the developer has to apply for a user account. Also, the

RTI must not be exported outside the United States or given to anybody else by the

approved user.

1 denoted by "libRTI" in the graph

CHAPTER 3. HIGH LEVEL ARCHITECTURE 23

This work is based on the "RTI Next Generation 1.3 Version 3.1", which was effective

during the implementation phase. In the meantime, the version has been advanced

to 3.2.

3.5 The RTI and Timing

In the previous chapter, different concepts for simulation timing have been introduced.

The Run Time Infrastructure can handle all these different concepts, which proves

its versatility. Federations that do not deal with time at all can be implemented just

as well as federations using highly sophisticated real-time synchronization schemes.

In general it can be stated, that each federate has its own understanding of time.

There is no such thing as an universal, common simulation time. But the RTI provides

means for the federates to coordinate their personal perception of time within the

federation, based upon a scheme that has been agreed upon.

To implement the timing behaviour, federates can set two attributes, and by doing

this, declare their own intentions and significance regarding the overall federation

timing:

• timeConstrained: This only means, that the federate is bound to federation

timing.

• timeRegulating: By declaring this, the federate states that other time con-

strained federates will be bound to this federate's local time.

This allows for many possible combinations. For example, all federates could be

CHAPTER 3. HIGH LEVEL ARCHITECTURE 24

constrained and one of them additionally regulating, to implement something like a

"Master-Slave" concept.

During the simulation, federates make known their intention of advancing their

local time by posting a timeAdvanceRequest to the RTI services. According to the

overall timing situation (i.e. how the before mentioned attributes are set and the

other federate's times throughout the federation), the request ist then granted by the

RTI, as soon as it becomes feasible.

3.6 Applications for the RTI

Statistics of RTI downloads and of DMSO user accounts show that the RTI software

is already being actively used by the military simulation community. Besides the

HLA's formidable capabilities, one reason for this is most likely the Department of

Defense policy to require all military simulations to be HLA-compliant by beginning

of the year 2001. Although not everywhere could this deadline be met, it still makes

clear the DoD's strong commitment to the HLA as the future foundation for all its

simulation efforts.

As part of this work an attempt was made, to find out more about which simulation

projects already use the HLA, to what extent and with how much success. However,

with the author being a civilian, no detailed information about projects utilizing the

HLA could be obtained. It seems though, that the efforts to incorporate the HLA

are most advanced in the military training community. Different training simulators

are interconnected to form whole battlespace training situations. Also the Joint

CHAPTER 3. HIGH LEVEL ARCHITECTURE 25

Warfighter Program builds on HLA compliance for its simulation efforts.

Now the applicability of distributed simulation and the HLA for CMIF's project

partner, the Edwards AFB Range Testing Facility, has to be considered. Recent

studies at CMIF proposed a distributed simulation environment as a necessary en-

hancement for EW range testing. The reason for this is, that the testing facility will

soon be faced with testing aircraft-type systems whose basic employment concepts

have them dependent on other system components. This means, that the airborne

platforms, usually the actual hardware test-objects, are not really independent, but

a part in a complex network.

Battlespace
Telemetry Simulator

p^—pn

m

Q
LU

LAN

* J^a^
Threat / SAM<
Simulator

FedExec
RtiExec

Simulation Control
Data Collection

Figure 3.3: This scenario shows how in the future range testing could be enhanced
by combining real (flying) components with virtual ones in one "simulation space".

Up to now, the range testing at Edwards is done in a one-on-one situation, where

the to be tested EW component is subjected to stimulation by a single threat, a

CHAPTER 3. HIGH LEVEL ARCHITECTURE 26

hostile SAM system for example. This proceeding neglects the fact that today's

battle scenarios resemble a network of interacting nodes, like fighters, AWACS radar

surveillance airplanes, command and control posts, etc. And the same is the case for

the enemy side as well.

Obviously it is not feasible to test a collection of full-scale system components. Thus

driven by affordability concerns, a need for distributed simulation arises. Previous

CMIF research proposes a Test and Evaluation (T&E) infrastructure based on a

distributed simulation approach.

Figure 3.3 illustrates a possible future scenario for range testing, where the to be

tested hardware is surrounded by an environment that is partly virtual and only

partly real2.

It must be understood though, that the proposed distributed, part-virtual environ-

ment will not be able to deal with the signal layer of the involved EW components.

The virtual sections of the environment would in some way be limited to a higher level,

and not deal with the very electromagnetic waves and signals, which are at the core

of EW component testing. Simulations, which communicate themselves by means of

electrical signals, would simply be too slow to emulate other high-frequency electrical

signals. But because the same limitations exist for the connections between the real

operational platforms, the simulated environment will still be able to contribute to

the experiment and not be too far from reality.
2In this context, the following color coding is common in the military: "Blue" depicts the friendly

side, whereas "Red" stands for foe. "White" denotes the environment perspective, meaning neutral

observers, controllers and eventual supporting services.

CHAPTER 3. HIGH LEVEL ARCHITECTURE 27

Before this vague background it is rather difficult to make definitive statements

about the applicability of the HLA for Edwards, or about the expenditure necessary

to implement the proposed T&E Framework using HLA. So this section can rather

be understood as a motivational scenario than as a technical concept.

Distributed simulation is not yet a fully mature science. There are many research

issues to be considered in the course of defining the proposed T&E framework and the

corresponding details before Edwards AFB Range Testing Facility will have sufficient

knowledge and confidence to decide on an approach to implementing the framework.

Thus there is a clear role for related univerity-type research to support Edwards in

defining and designing the eventual framework approach to a new T&E infrastructure.

Chapter 4

The CMIF HLA Environment

4.1 Purpose of the CMIF HLA Environment

The Center for Multisource Information Fusion (CMIF) conducts research in various

fields of distributed data fusion, taget tracking and also multi-agent systems. A

significant part of this work is usually done by single student or small student teams.

Naturally, the personal committment of an university student ranges rather over a

couple of months than over several years, as it would be the case in a professional

environment.

It would be desirable to utilize "real" distributed simulation, with all its before

mentioned benefits, for the CMIF projects where applicable. But at the same time,

the manpower available for these projects should not be wasted on familiarization with

details of the RTI concept and implementation. Instead, the focus has to remain on

distributed data fusion research.

28

CHAPTER 4. THE CMIF HLA ENVIRONMENT 29

The purpose of the CMIF HLA Environment is to bridge the gap resulting from

the two goals introduced in the last paragraph: Make the RTI available to CMIF's

research projects whithout requiring in-depth RTI knowledge or programming ex-

perience. Also, a reusable tool for simulation support is desirable, enhancing the

simulation testbed with functionalities for simulation configuration, control and eval-

uation.

...easy-to-use,
tailored subset

...complex,
full functionality

Experiment
Participant

A

Experiment
D^~^cipant

B

TfC, _
^V^w-iV-- inter-Process Communications^

Figure 4.1: This graph shows a conceptual view of the CMIF HLA Environment. The
complex RTI is masked from the developer of experiment participants by the CMIF
programming toolkit, whose tailored functions are easier to use.

Figure 4.1 shows the concept of the CMIF HLA Environment. It is to be understood

as a further development of the functional view to the Run Time Infrastructure from

figure 3.2. Again we have several federates hooked up to the RTI services and thus

populating one HLA defined "simulation space". But this time, the developers of

the federates "Experiment Participant A" and "Experiment Participant B" do not

CHAPTER 4. THE CMIF HLA ENVIRONMENT 30

have to deal with the RTI Application Programming Interface (API)1 but instead use

the API provided by the CMIF HLA Environment. The CMIF API will ensure the

following:

• The complex functionalities of the RTI are hidden from the application devel-

oper.

• Simple means for communication between experiment participants are made

available.

• The functionalities of the supporting tool "control center" are accessible by a

few simple method calls.

For technical reasons, a distributed simulation can never start right away with the

pursuing of its simulation goal. Issues like establishing contact between the compo-

nents and negotiation of key simualation parameters have to be taken care of first.

In order to better organize this, the following set of six "Experiment Phases" was

defined for the CMIF HLA Environment. Each phase requires a specific behaviour

for the experiment participants as well as for the control center.

Phase I Configuration: This phase covers all steps necessary to configure an

experiment within the CMIF HLA Environment. Defining which experiment

participants will be present and setting timing parameters, for example.

Phase II RTI Setup: Initiation of contact to the RTI services, (in case of the

control center:) launching the federation execution and establish contact

between control center and experiment participants.
1 denoted by "libRTI" in respective graphs

CHAPTER 4. THE CMIF HLA ENVIRONMENT 31

Phase III Simulation: The experiment participants perform their actual simula-

tion work, the control center provides the timing and other support services.

Phase IV RTI Cleanup: Orderly termination of contact to other federates and

shutdown of the federation execution.

Phase V Shutdown: Cleanup and termination of the program itself.

Another phase could be "Simulation Postprocessing", following after the "Simula-

tion" phase. It would cover everything related to the processing and evaluation of

experiment results. Because no such evaluation functionality is implemented in the

support tool "control center" so far, this phase was left out. An augmentation might

later be necessary.

4.2 The Federation Object Model

This section refers to the definition of HLA object models as introduced in section

3.3. The Federation Object Model (FOM) contains the object-oriented definition of

Objects and Interactions, representing the common view that all federates have of

the simulation space.

To implement the CMIF HLA Environment, only two kinds of objects are necessary.

They will be introduced from a FOM point of view at this point, but more detailed

information will follow later in the according sections.

CMIFControlCenter

The control center will be the central federate within the CMIF HLA Environment,

CHAPTER 4. THE CMIF HLA ENVIRONMENT 32

Objects:

RTIControlModule
Attributes:
•Experiment State

[ExperimentRärtrcipäf
Attnbüreal
fRarticip'är

rartici

Interactions:

StatusMessage :Sender, Content>

Control Interaction

MessageToBus

MessageFro mB us

| '.' ■■•':_ < Recipient, Contents-

<Sender, Recipient, Content»

cSender, Recipient, Content»

Figure 4.2: This graph shows the Federation Object Model for the CMIF HLA Envi-
ronment with all objects and interactions, including their attributes.

responsible for all coordination and control issues. In the simulation space, it will

be represented by the HLA object RTIControlModule (the nomenclature will be-

come more obvious once the actual implementation of the control center and its

class structure will be discussed). The only attribute to the control center will be

Experimentstate, containing coded status information.

CMIFExperimentParticipant

Because the CMIF HLA Environment is again, very much like the High Level Archi-

tecture itself, a neutral testbed, it is not possible and desired to predefine what later

participating federates in this environment will be like or what they will do. The

only thing that is for sure is that they will interact with the control center and, of

course, with each other. The first aspect refers to the environment's administrative

CHAPTER 4. THE CMIF HLA ENVIRONMENT 33

functionalities, whereas the latter one refers to the actual experiment content, the

simulation specific behaviour.

Based on this, we introduce as an HLA object the generic CMIFExperimentPartici-

pant. The only attributes neccessary for the abstract experiment participant are

ParticipantName, for identification, and ParticipantState, which will contain sta-

tus and "health" information.

Also the following set of interactions, meaning: non-persistent objects, are defined

for the CMIF HLA Environment:

• Controllnteraction: A means for the control center to control experiment

participants. The two attributes are Content and Recipient.

• StatusMessage: This interaction lets the experiment participants send admin-

istrative information back to the control center. Attributes are Content and

Sender.

• MessageToBus: The "Bus" represents the virtual communication line for inter-

experiment participant communications, which are in reality routed through the

control center. MessageToBus is a message issued by Sender for the Recipient.

• MessageFromBus: This is a MessageToBus after processing and rerouting by

the control center.

All listed interaction attributes are of type String, whereas the status attributes of

the two objects are of type int.

The definition of the Federation Object Model is the binding step, and since the RTI

CHAPTER 4. THE CMIF HLA ENVIRONMENT 34

relies on late-binding2, all this is done by means of a federation configuration file that

is interpreted at runtime. More precisely: at the initiation of the federation execution

background process fedex. The file CMIF_HLA.Environment. fed, which defines the

FOM for the CMIF HLA Environment, can be found in appendix B. While the .fed

file also contains many higher-level parameters, the code that defines our specific

objects and interactions can be found in two relatively small sections that are on

pages 81 and 84. An overview to the whole CMIF HLA Environment FOM is given

in figure 4.2. A more detailed description of the two major objects will be provided

in the subsequent sections.

4.3 The CMIF Control Center

4.3.1 Overview

The CMIF control center is supposed to serve as a "White" control tool for experi-

ments whithin the CMIF HLA Environment. Its main functions are to provide the

user with control over and information about:

• experiment configuration,

• the simulation run,

• experiment participants present in the simulation space and

2This means, the definition of the object-structure is not hard-coded into the RTI software. While

increasing the complexity, this is also the prerequisite for the RTI's high flexibility. The opposite

concept would be early-binding.

CHAPTER 4. THE CMIF HLA ENVIRONMENT 35

• data collection for evaluation.

You could also think of the control center as an "operator's desk" from where the

simulation environment can be supervised. Some functionalities that are already in-

tegral parts of the CMIF HLA Environment concept, could not be implemented yet.

Mainly these are: Data collection, evaluation of the amount of data being transferred

between participants, emulation of communication "bandwidth" and advanced mes-

sage routing. The implementation of these functions will follow with the next version

of the CMIF HLA Environment package.

4.3.2 Class Structure

Because the implementation of the control center was a major part of this work, a

few more details about its inner concept will be provided at this point. The control

center's functionalities are distributed over the following classes:

• CMIFControlCenter: The main class, linking all other components. It is re-

sponsible for startup of the program and initialization of all major components.

• CMIFControlDisplay: This class bundles all user interface functionalities. Dis-

play components are initialized and maintained.

• CMIFExperimentManager: The experiment manager is active during the con-

figuration phase and handles all related tasks.

• RTIControlModule: This class is responsible for all activities related to the

RTL It establishes and maintains contact to all background services and to the

CHAPTER 4. THE CMIF HLA ENVIRONMENT 36

experiment participants during simulation setup and run.

• RTIControlModuleFedamb: The final interface class, linking the RTIControl-

Module to RTI services.

i-
a
(0
a
o

o
u.

Ü,

CMIFExperimentManaaer
F* =* £

i •- O I

IBl
UV*J.:-^:j

CMIFGontrolCehterl

* *

|^ RTIControlModule

4= =♦=
RTIControlModuleFedamb

t t t
''" RTI Services

(„Simulation Space")

T3
CD

3'
«CDII
3

I

CDS'

I
^Experiment File

>>start time: 0.0
»end time: 60.00
» iiit erval: 2 ..0 ^

Figure 4.3: Overview over the control center class structure and interactions with
outside components.

Also, some utility classes were developed, for example the classes DebugHelper and

ExperimentFileHandler. The first one makes the output of debugging information

(during development) easy and controllable. The latter one reads and writes the . cef

experiment configuration files. See figure 4.3 for a depiction. The whole sourcecode

can be found in the appendix, section D.I.

CHAPTER 4. THE CMIF HLA ENVIRONMENT 37

4.3.3 Graphical User Interface for the Control Center

i Experiment .Edit Phases j

: <t«mo: dlk03

' I About». :

Time Management—-■■—

Mi HI 1I 60.0

i i 60.0

| * tnicrvaj; • . -

-; ' Scol«.- i ■*

|.x ■ ■ " ■ *. 'Ippfltf

j Experiment Participant« ^ha^hele^^fnmufTMciqtf

• Partie i'pante to cnnta^t. — - ■■

fContactGenerator

iDisplayl

I Display

| WfcvJjt, ' ; | Delete i

■Expcilm

.;. • ' ConMgrall .

6 RTI Sutup

• . Simulation. .

• RTf Cleanup

© Sri ut down

JrDuMnu Simulation ■ ■ ■ ■ ■ -

. ■
A Name ContaclGenerator Shut Oown jj Ping 1, Stop 1 Reset 1

■^^^m^^^^^^^^^^^^^^^^^^^^^imMM^m^^^^^^^^^^^^^^^^m

'.'■ *;

■Q N.in.is." Dtoplay? 1 Shut Down I .Ptno j Stop'jj Reset, i

■

"'' 4| Name Display 1 Shut Oown 1 Pino'' I Stop ■ j Reset '

Wm^ Clear

jfAttempting to set up the RTI and all participants.... I
ffrhis could take a few moments.

pTrying to start the simulation...

iiSimulation is running...

isimulatton is completed...

ifShutting down the RTi... P 1

Figure 4.4: Screenshot of the complete control center user interface

Figure 4.4 shows a Screenshot of the control center's graphical user interface (GUI).

In the following, the main sections and their functionalities will be introduced.

Menus

In the current version, the control center contains two main menus, Experiment and

Phases, offering the following functionalities: The Experiment menu contains items

for handling the overall experiment configuration and the configuration files:

• New

Open Old Experiment

CHAPTER 4. THE CMIF HLA ENVIRONMENT 38

• Close Current Experiment

• Save Configuration

• Save As...

• Exit

These should be more or less self-explanatory. Save... writes the. cef file and Exit

terminates the whole control center application. The Phases menu lets the user

switch between the before mentioned "Experiment Phases":

• Configure Experiment

• Setup RTI Execution

• Run Simulation

• Abort Simulation

• Clean Up RTI

A Screenshot of both menus can be seen in figure 4.5

Info Panel

This panel simply shows the name of the current experiment configuration and allows

to access additional information that has been stored about this experiment (see figure

4.6).

Timing Panel

This section of the graphical user interface allows to configure the timing parameters

CHAPTER 4. THE CMIF HLA ENVIRONMENT 39

New

Open Old Experiment -

Close Current Experiment

Save Configuration

Save A»...

Exit "■ ■ '■ ■" v St '~M>

Go to;.;.

.-■ .Configure Experiment

' Setup RTI Execution '

Run Simulation Wi:/-MtM

\ Abort Simulation

• Clean Up RTI

Figure 4.5: The control center Experiment and Phases menus

for the current experiment. On top, the master time, which progresses from start to

end time during the simulation run, is displayed. The key values are: Start, End,

Interval and Scale. The first two define the section of time that the simulation

run will cover and the third sets the length of the time steps along which the time

progresses. All three represent seconds. The last value defines the scaling factor

which determines, how real-time and experiment time are related to each other (ref.

figure 2.2). Changes in the timing section can only be made during the configuration

phase and not while the RTI is being set up or the simulation is running (see figure

4.6). To make any changes effective, the Update button has to be pressed first.

Phases Panel

As a simple means for the user to see what state the control center is in at a given

moment and what steps can/must be taken next, this panel shows the experiment

phases together with colored icons. The icons have the following meanings:

• Green, blinking: This phase is currently in progress,

• Green, steady: This phase has successfully been completed,

CHAPTER 4. THE CMIF HLA ENVIRONMENT 40

Name: dik03

. About...

■• _.

Muster Ti...j 60 0i

" Start 0.0 j

Fn«l- 60.0

Interval: j ■ i'1'

Sr.alf 1.0 j

UptJrt'L-

#fe Configrati ...

<A RTI Setup

^M Simulation. .

& RTI Clennup

^a Shutdown

Figure 4.6: This Screenshot shows a close-up of the left side of the control center's
user interface. It contains sections for experiment information, timing parameters
and the simulation phases.

• Orange: It is possible to switch to this phase,

• Red: Switching to this phase is not possible.

Experiment Participants

Of the three panels situated on the upper right side of the main window, only one

contains actual functionalities in the current version of the control center. The "Ex-

periment Participants" panel has an important role in the control center's concept:

CHAPTER 4. THE CMIF HLA ENVIRONMENT 41

1 Experiment Participant« IffÄwwTfci*^

1

M "|;""Mo.i.rr"'i"' >e)e1e

1 , __ . „__

1

1

1 ^& Name: Contact Generator j Shut Down Ping Stop I j Reset' ■Hi
v <

r ?** "^%t
^fr Naine.y Dlapley2- Shut Down

■ ■* ^& Name: Dteptayl Shut Down j >

Ping •* : Stop]

Ping i j Stop * [j

l'i tint %J

Revet !

Figure 4.7: This section of the control center GUI informs about the experiment
participants. The upper part represents the list of participants to contact, below is
the dynamic representation of experiment participants during runtime.

Because the control center operates independently from experiment participant ap-

plications, the participants have to be contacted during runtime. Also, the control

center does not "know" about what kind of applications will be present in the simula-

tion space. So the user has to provide the control center with a list of all experiment

participants that are to be expected. This is done in the upper part, where, during

configuration, the user can add, remove and modify names on the "Participants to

contact..." list.

The lower section ("During Simulation...") is a dynamic representation of the

control center's perception of the simulation space. For every experiment participant

that is discovered during the RTI setup phase, an information and control panel is

created. It displays the experiment participant's name, the current status (colored

icon) and allows remote control via control interactions. These are triggered by using

CHAPTER 4. THE CMIF HLA ENVIRONMENT 42

the Shut Down, Ping, Stop and Reset buttons. The first two do work, the latter two

have no effect in the current version of the software.

Only after the number of participants and their names in the lower, dynamic, list

match the entries of the configuration list above does the control center declare the

RTI setup phase for completed. See also figure 4.7.

Message Area

This area on the lower right side of the control center's window is used to display

messages and feedback-information, errors, status, etc. - to the user.

4.4 The Experiment Participant

The other object that is defined by the CMIF HLA Environment federation object

model is the CMIFExperimentParticipant. It is a generic representation of an ar-

bitrary application that will in some way be involved in a distributed simulation

experiment. This high level of abstraction makes it difficult to describe what the

CMIFExperimentParticipant actually is, but reflects the very underlying concept:

Think of what a distributed simulation with its components could be like and try to

boil down their behavoir to a very general level. This leads to the statement, that all

that any participant in a distributed simulation does, is the following:

• perform specific work, related to the simulation experiment,

• communicate with the other simulation participants as part of the simulated

behaviour and

CHAPTER 4. THE CMIF HLA ENVIRONMENT 43

• communicate with the infrastructural services, support tools etc.

This can be interpreted as two separate levels: The Simulation Level deals whith the

actual purpose of the experiment, e. g. the tracking algorithms in a tracker component.

Below that, on the Administrative Level, all the necessary tasks can be found that

make the application actually participate in the distributed environment, negotiating

timing and synchronization for example.

Participant Application

CMIFExperlmehtPärticipähts

[V,Cbnhectwith'.R"n-&v

Perform simulation
specific work

!.- :•;.. CqntrolGentera^:|^^^^
[•: H'andjerc.pn{rp1^^; EJjjH;

Send messages

Receive mess;

^ nter-Process .Communications?
iZjifiJ, ^—»—. ■■= ' " ' *" '

Figure 4.8: An overview over the experiment participant concept

Figure 4.8 visualizes how this concept is put into action: Any experiment participant

application will subclass the generic CMIFExperimentParticpant and thus inherit its

capabilities of dealing with the RTI services and communicating with the control cen-

ter, the Administrative Level functionalities. Now the developer has to implement the

simulation-specific behaviour to make his experiment participant actually do some-

CHAPTER 4. THE CMIF HLA ENVIRONMENT 44

thing. He also has to define the inter-participant communications, but does not have

to go all the way down and work on the Administrative Level in order to do so. In-

stead, easy means for every contact with the "outside world" are provided by the

CMIFControlCenter superclass.

From an HLA point of view, which brings us down to the Administrative Level, the

experiment participant issues MessageToBus and StatusMessage interactions and

itself is recipient to Control- and MessageFromBus interactions.

4.5 Implementation Remarks

For the implementation of the CMIF HLA Environment, the Java programming lan-

guage was chosen. The main reason for this choice was the platform independency

that Java provides. Code that is developed and compiled on one operating system will

work on most other systems too (with some minor technical limitations, of course).

With the CMIF lab's computer network being a conglomeration of various operating

systems and hardware platforms, using Java seemed like the only feasible approach

for providing the lab with a usable software package for distributed simulation. Also

while Java features all aspects of a high-level object oriented computer language, it is

less error-prone (i. e. programmer's errors) and is generally very suitable for prototype

development. Last not least, with Java's fuctionalities it is especially easy to develop

appealing graphical user interfaces. A prerequisite was of course, that the run time

infrastructure is available in a Java version, too.

CHAPTER 4. THE CMIF HLA ENVIRONMENT 45

The choice of Java also has some drawbacks:

• Subsequent development of applications will be limited to Java 3

• Java is not an ideal platform for the development of mathematical and numerical

software and lacks a lot of functions in this regard. Add-on packages might be

available, though

• The advantage of platform independency comes at the price of slower perfor-

mance. Although this is a general problem of Java, no significant problems

could be observed at the current stage of development of the CMIF HLA Envi-

ronment.

theoretically, any other RTI supported language would be fine too, but that would require to

start over at a deeper level and thus an in-depth knowledge of how the RTI and the CMIF HLA

Environment work. Thereby, the initial goal of simplicity would be foiled.

Chapter 5

A Programmer's Guide: How to

Install and Use the CMIF HLA

Environment

This chapter is supposed to serve as a tutorial and programmer's guide for the imple-

mentation of distributed simulation experiments within the CMIF HLA Environment.

It will cover all steps necessary, from installation of the software infrastructure over

programming advice up to the actual execution of a simulation run. The latter two

steps will be illustrated by guiding the user through the development of a sample

program, the DemoApplication, which is part of the CMIF HLA package. Pre-

requisites for planning and implementing an experiment are knowledge of the Java

programming language and familiarity with the specific operating system (s) for the

installation process, because the RTI as a developer's tool is quite complex.

46

CHAPTER 5. PROGRAMMER'S GUIDE TO CMIF HLA 47

Please note that there will be no introduction on how to directly access the RTI

within own code, because the whole purpose of the CMIF HLA Environment is to

make this step obsolete for new users. Those who want to get into this highly complex

area may be referred to the detailed doucmentation that comes with the RTI software

([DefOOb] to [DefOOd]). Also studying the commented source code of this work (see

appendix D) or sample programs provided with the RTI can be extremely helpful.

5.1 Download and Installation of the RTI

Before using any part of the CMIF HLA Environment, a functioning installation of

the Run Time Infrastructure is needed on all platforms and computers that will be

used in an experiment setup. Because a very detailed description of the process,

also addressing the different platforms, can be found in the "RTI Installation Guide"

([DefOOf]), the following list covers the proceeding only in brief:

Download the Run Time Infrastructure software from the DMSO server at

http://sdc.dmso.mil. This requires to obtain a user account first. The soft-

ware is provided for different platforms and programming languages from which

the user can choose the appropriate configuration. There usually are installa-

tion prerequisites, like the presence of certain C-libraries or C-compilers on the

system, but these prerequisites are well documented.

Note that the RTI implementations in programming languages other than C++

are usually add-ons to the C++ core system. For example, for the CMIF HLA

Environment (which uses Java), the C++ as well as the Java package have to

CHAPTER 5. PROGRAMMER'S GUIDE TO CMIF HLA 48

be downloaded and installed. The specific packages used for this work were:

RTI-1.3NGv3.l-SunOS-5.6-Sparc-SPR0-4.2-opt-mt.sh and

RTI-1.3NGv3.l-SunOS-5.6-Sparc-SPR0-4.2-opt-mt-JavaBinding.sh.

It can be seen, that even the name of the download file reveals the key infor-

mation about the specific configuration.

Unpack the software to a suitable directory, the core and the Java packages to

the same one. The RTI packages usually come as self extracting executables

(. exe and . sh) or have to be unpacked using the ZIP (Windows) or the gunzip

and tar (UNIX) utilities. The resulting directory structure after unpacking is

standardized for all RTI versions and can be seen in figure 5.2.

#RTI variables:

export RTI_HOME=/home/kharth/HLA/RTI-l.3NGv3.1

export RTI_BUILD_TYPE=SunOS-5.6-Sparc-SPR0-4.2-opt-mt

export LD_LIBRARY_PATH=

$LD_LIBRARY_PATH: $RTI_HOME/$RTI_BUILD_TYPE/lib

#RTI Java

export JAVA_BINDING_HOME=
$RTI_HOME/$RTI_BUILD_TYPE/apps/javaBinding

export CLASSPATH=$CLASSPATH$JAVA_BINDING_HOME/classes:.
export LD_LIBRARY_PATH=

$LD_LIBRARY_PATH:$JAVA_BINDING_HOME/lib

Figure 5.1: Sample configuration file .bashrc

CHAPTER 5. PROGRAMMER'S GUIDE TO CMIF HLA 49

Adjust the environment variables. The RTI relies on this mechanism to facili-

tate the management of different RTI versions or configurations in one filesys-

tem. The variables point to the directories where the system files are to be

found and the following settings are needed:

• RTI_H0ME - set to the directory where the RTI is installed

• RTI_BUILD_TYPE - set to the installation specific build type

• JAVA_BINDING_HOME - directory where the RTI Java classes can be found

• LD_LIBRARY_PATH - path to shared object libraries (UNIX specific), both

C++ and Java

• CLASSPATH - path to Java classes

Under UNIX these settings are usually defined in the .bashrc or .aliases

configuration files. See figure 5.1 for a sample section of such a file. On Windows

platforms the approach is slightly different, please refer to [DefOOf].

Modify the configuration file RTI. rid. This file contains important system and

networking settings for the RTI. For now, one parameter has to be defined:

Open the file in a text editor and change the setting for RtiExecutiveEndpoint

to the hostname (and port number) of the computer that will be running the

RTI background process later. The port number is a five digit number that is

arbitrary as long as it does not interfere with any other service that is using

the network. If all components of the experiment will be running in different

processes on the the same computer, the line can be commented out all together.

See appendix A, line 4, for a sample setting. You can keep several RTI.rid

CHAPTER 5. PROGRAMMER'S GUIDE TO CMIF HLA 50

files with different settings. When, during runtime, the federation execution is

created (f edex process), the program always looks for the file automatically in

the same location from where the control center was launched.

5.2 Installation of the CMIF HLA Environment

Installation Directory

<RTI Version>
X

<platform/build type>

apps bin
X
doc

I
etc

X
include lib

javaBinding

apps
—r—

X
classes lib doc

CMIF_HLA_Environment 1 (RUrij) (cMIF_HLAErwlronmen»ed)

CMIFControlCenter CMIFExperimentParticipant
I X
util DemoApplication

Figure 5.2: This graph gives an overview over the directory structure of the CMIF
HLA Environment. White boxes indicate a common RTI installation, grey indicates
parts of the CMIF HLA Environment.

The latest version of the CMIF HLA Environment can be obtained from the au-

thor. You will receive either a .zip (Windows) or .tar.gz (UNIX) file which has to

be unpacked into the directory $JAVA_BINDING_HOME/apps/. The resulting directory

structure, which is added onto the common RTI installation, can be seen in figure 5.2.

The directory CMIFControlCenter contains all the classes that belong to the Control

CHAPTER 5. PROGRAMMER'S GUIDE TO CMIF HLA 51

Center whereas CMIFExperimentParticipant contains all classes of the generic ex-

periment participant. Parallel to the CMIF_HLA_Environment directory, the two RTI

configuration files can be found: RTI. rid, defining networking and system param-

eters, and CMIF_HLA_Environment. fed, the file defining the federation, its objects,

interactions and attributes (see appendices A and B). This also is the point from

where CMIF HLA related applications have to be started.

The current version of the CMIF HLA Environment has been developed and tested

under Sun Solaris 2.6, using the "RTI-1.3 Next Generation Version 3.1". Also a test

under Linux (Debian 2.2) has been successful. Normally the software should also

work on other platforms or with newer versions of the RTI, but limitations may exist.

For the Java programming, a Java Software Development Kit (SDK) for Java 2 is

needed which supports Java native threads. For details see the Sun Microsystems

website at http: //www. sun. com.

5.3 Implementing an Application

What follows is the description how to actually implement own experiment partic-

ipants or "agents" that can form an experiment within the CMIF HLA Environ-

ment. This is the point where the transition from the abstract early-binding stage

to late-binding is made and the generic experiment participant is developed into an

application with specialized behaviour.

The main step to make all services accessible to an application is to subclass the

generic CMIFExperimentParticipant. This class masks all low level communication

CHAPTER 5. PROGRAMMER'S GUIDE TO CMIF HLA 52

with the RTI from the developer and provides two-way interaction with the rest of

the system by means of the inheritance principle: The application can act by calling

methods provided by and inherited from its superclass. At the same time it can react

through the callback concept. "Callback" means, that during program execution, the

super class will invoke methods that are empty on the superclasses level itself. Only

if they are overridden in the subclass and given any specialized behaviour, something

actually happens.

5.3.1 Programming Toolkit Overview

5.3.1.1 Setup

In this case, "setup" means the initialization of the contact to the Run Time Infra-

structure and, after that has been accomplished, the contact to the control center.

The key steps are as follows:

1. Establish contact to and join the CMIF_HLA_Environment federation execution.

This of course means, that it must already exist. The federation execution is

created by the control center, during the RTI setup phase.

2. Report to the control center and exchange status information.

3. Receive key simulation information (i. e. timing) from the control center.

These tasks are processed in the background. All that has to be done at the applica-

tion level to get started is to call the method

doSetupO.

CHAPTER 5. PROGRAMMER'S GUIDE TO CMIF HLA 53

This does not necessarily have to be at the beginning of the program, just prior to any

RTI related activity. The setup process is executed asynchronously in its own thread,

which means that the call to doSetupO returns almost immediately and other things

can be done. The applicataion is then notified of the succesful completion of all setup

tasks by a callback to

doneWithSetupO.

Furthermore, a callback to

timingParametersChanged()

indicates, that the timing parameters (i. e. start and end time, increment and scale-

factor) have been set after negotiation with the control center. After these steps, the

application has nothing to do except to wait for the signal from the control center

that the simulation run has started. This is accomplished by calling the method

waitForSimulationO,

which puts the execution on hold until the next phase becomes active.

5.3.1.2 Simulation Run

As discussed earlier, there are two major paradigms for federate behaviour: Time-

Stepped and Event-Based.

A Time-Stepped application will follow the simulation timeline and somehow deter-

mine its actions based on the current time. To implement this behaviour, the following

concept is needed: After simulation start, the program has to enter a while-loop. At

one time within the loop, a call to the method

advanceOneStep()

CHAPTER 5. PROGRAMMER'S GVIDE TO CMIF HLA 54

has to be made to force the federate to the next step in time (old time + increment).

Alternatively, a call to

advanceTo(double newTime)

overrides the time increment parameter and attempts to jump directly to newTime.

The call to one of these methods does not return until the desired new time is feasible,

which means synchronous to the control center's master time. As a condition for the

while-loop,

boolean simlsRunningO

can be used, which returns true or false to indicate if the simulation is still in progress.

Furthermore, with

double getTimeO

the current federate time can always easily be obtained.

The whole thing will look like this:

while (simlsRunningO) {
//do something...
//...and something else

advanceOneStepO ;
}

An experiment participant with Event-Based behaviour is much easier to implement.

Nothing special has to be done. The processing of incoming or outgoing messages and

interactions is already ensured by an independent background thread. Any action will

really be a reaction to some kind of input, live user/"player" or message. The means

and methods for processing incoming interactions to the application will be discussed

in the next section. Time, in this scenario is disregarded.

The most likely and realistic case however will be a combination of both Time-

CHAPTER 5. PROGRAMMER'S GUIDE TO CMIF HLA 55

Stepped and Event-Based behaviour, which requires a very careful aproach. All

situations where one part could block out the other one have to be strictly avoided.

For example, the program might be lying dormant to wait for user input and, while

doing so, not perform the time-stepped tasks. Other available methods and callbacks

related to the simulation run are

• doneWithSimulationO: Another notification that the simulation run is over.

This can be used in Event-Based experiment participants, because these would

not have the simulation while-loop.

• updateSimTime (double simTime): Whenever the simulation time has success-

fully been changed to a new value, this callback method is activated.

• abortSimulationO: Notification that for some reason the simulation has been

aborted.

5.3.1.3 Communications

This section deals with the methods and callbacks that are involved when commu-

nicating with the "outside world", i. e. other experiment participants or the control

center. All data exchange is done with String data types. For details how to convert

other data types to and from String representation, please refer to the Java API

Documentation [JavOOb], classes String, StringBuffer, Integer, Double etc.

The following methods are responsible for outgoing messages:

• sendMessageToBus(String message, String recipient): A message to the

imaginary communications "bus" that the experiment participant is connected

CHAPTER 5. PROGRAMMER'S GUIDE TO CMIF HLA 56

to. First it goes to the control center for evaluation and logging, and from there

it is distributed to the final recipient (which can also be "all", in order to reach

all present participants).

• sendStatusMessage(String message): Status messages can contain data for

experiment evaluation. They are simply sent to the control center and written

to the log file.

And in the opposite direction, incoming messages:

• receivedMessageOnBus(String sender, String content): Callback meth-

od, delivering a message from another experiment participant, the sender.

5.3.1.4 Multi Threading Problems

In the way presented above, the experiment participant functionalities are only suit-

able for applications that do not perform heavy computational tasks. If that were

the case, all tasks that are also running in the main thread, will be slowed down or

even halted, because the main thread is also where the actual "simulation work" of

the application is done. The most common occurrence of this problem is when the

display "freezes" and thus behaves strangely: Buttons do not react, menus stay open

instead of collapsing or other obsolete information is being displayed. The interaction

with the "outside world" (i. e. all RTI related business) however will not be affected

because all related tasks are already provided with their own threads.

These issues are not resolved easily and it has to be considered whether the CMIF

HLA Environment is the right testbed for "number crunching" applications, anyway.

CHAPTER 5. PROGRAMMER'S GUIDE TO CMIF HLA 57

Nevertheless, there is one possibility how to decouple the simulation task from from

the GUI related work and thus make the display perform smoothly without in-depth

knowledge of Java threads programming. The utility class SwingWorker (see appendix

D.4.3) provides an easy means for using an additional thread to keep the display from

halting. Just place the following code whereever the new thread is needed:

final SwingWorker worker = new SwingWorker0 {
public Object construct0 {

//...code that might take a while
//to execute is here...

return null;
}

};
worker.start 0;

The call to worker.start0 initiates the new thread execution, but then immedi-

ately returns from the call and continues in the old thread. An extra thread can be

very convenient, but the following limitations exist: From inside the new thread you

cannot perform any GUI related work, except for calls to Container.revalidateO,

Component .repaint () because only those are handled in a thread-safe way.

There are much more functionalities to the SwingWorker class, though. A detailed

description can be found at [JavOOa], under /uiswing/misc/threads.html.

5.3.2 An Example: ContactGenerator and TacticDisplay

To do a "Proof-of-Concept" for the CMIF HLA Environment implementation, as well

as to evaluate handling of the control center and test system performance, two demo

CHAPTER 5. PROGRAMMER'S GUIDE TO CMIF HLA 58

applications were implemented. First, the functionalities of the ContactGenerator

and TacticDisplay will be described. Then it will be shown how the concepts, meth-

ods and callbacks which were described in the last section, are actually put to work in

"real" applications. However, the ContactGenerator as well as the TacticDisplay

do not contain any functionalities related to actual distributed data fusion.

5.3.2.1 The TacticDisplay Application

)

Simulation

A Time: 60.0

Com rn unicationa -

tS Broadcast Contacts K, Receive Contacts

Clear Display

Figure 5.3: Screenshot of the TacticDisplay application user interface

The TacticDisplay resembles a simple radar display. Its user interface features a

radar screen with 2-D coordinates. Within the rectangular display area, a yellow circle

indicates the imaginary "radar range" of the TacticDisplay. During the simulation

run, the application reacts to incoming messages, which resemble position reports.

First-hand radar contacts are reported to the application in the following way:

CHAPTER 5. PROGRAMMER'S GUIDE TO CMIF EL A 59

ContactX=#11705#Y=#2342#.

The program now evaluates if an incoming report falls within the range of its own

radar, if it can actually "see" the target itself. If that is the case, the position report

is displayed on the screen with a red x. Furthermore, any TacticDisplay also shares

known contacts by rebroadcasting them with a message like this:

ReportedContactX=#11705#Y=#2342#.

Any other TacticDisplay, which is present as an experiment participant, will display

such a second-hand report with a grey +, no matter, if the position falls into its own

reception range or not.

In addition, the application also has a "Communications" panel which lets the user

toggle the behaviour regarding the broadcasting and the evaluation of second-hand

reports. The "Simulation" panel just displays information about the state of the

simulation run and the current federate time. A Screenshot of the graphical user

interface is shown in figure 5.3.

5.3.2.2 The ContactGenerator Application

As the name suggests, the ContactGenerator provides the TacticDisplays in the

simulation space with the mentioned first-hand contact reports. To come up with

these, it lets the user "fly" an imaginary "airplane" across the 2-D plane. The user

interface again has a 2-D display area on which the current and former positions of

the airplane are depicted. The flight path is determined by entering (and dynamically

altering) values for the parameters X Position, Y position, Velocity and Heading

in the according textboxes. Like in the TacticDisplay, the "Simulation" panel

CHAPTER 5. PROGRAMMER'S GUIDE TO CMIF HLA 60

1

*

1

^ffl

■
^^^^^BB

SEiMgwB

« Time; 60.0

X Position (m): §15021.043159544724 |

Y Position <m) ._

Vdo^rty (m/«tei'V

Heüdiriy (il*'y).

§16316.606624073582 |

1|600 1

|270 |i

Clear Display |

Figure 5.4: Screenshot of the ContactGenerator application user interface

informs about simulation state and progress of time. A depiction of the user interface

can be seen in figure 5.4.

5.3.2.3 Implementation

The full sourcecode for both the TacticDisplay and the ContactGenerator class

can be found in the appendix, sections D.3.3 and D.3.1, respectively. At this point

however it will be shown, how the methods of the CMIF HLA Environment are

to be used and implemented, in order to show the developer how to approach the

implementation of own experiment participants.

First of all, the CMIF HLA Environment packages have to be made accessible using

the import declarations at the beginning of the code:

CHAPTER 5. PROGRAMMER'S GUIDE TO CMIF HLA 61

import CMIF_HLA_Environment.CMIFExperimentParticipant;
import CMIF_HLA_Environment.util.*;

Then comes the class declaration, also defining, that the new class is a subclass to

the abstract class CMIFExperimentParticipant:

public class ContactGenerator

extends CMIFExperimentParticipant

The static method main (String argv []) is always called by the Java virtual machine

at the start of any application. Command line arguments, if any, are passed in the

String array argv []. Because we want an object instance of our application, we

create it right there, using the new operator:

public static void main(String argv[]) {
ContactGenerator instance =

new ContactGenerator(argv);
}//end of main

Now follows the constructor, which could be considered the start-up method of the

object instance. The first method call has to go to the constructor of the superclass,

using super (). In this case, CMIFExperimentParticipant is the superclass and it ex-

pects one String argument, the name of the specific experiment participant by which

it later will be identified within the simulation space. For the ContactGenerator the

name is fixed, whereas the TacticDisplay adapts the first command line argument

as its name during startup.

public ContactGenerator(String[] argv) {
super("ContactGenerator");

CHAPTER 5. PROGRAMMER'S GUIDE TO CMIF HLA 62

Now, still at the beginning of the code, the crucial steps to get involved with the rest of

the simulation space follow like this: First the setup phase is initiated and then, while

that is taken care of asynchronously in the background, the method createDisplayO

is called. This method is application specific and contains the code to put together

and initialize the graphical user interface. With Java and Swing, Java's GUI toolkit,

this itself can take some time and might be rather slow. Normally, a callback from

the superclass (doneWithSetupO) indicates when the setup phase has successfully

been completed, but since we do not need to do anything special in that case, we just

enter the method waitForSimulationO, which holds the program execution until

the control center gives the signal that the simulation run has started.

doSetupO ;
createDisplayO ;
waitForSimulationO ;
startSimulationO;

}//end of constructor

Everything that has to be done during the run, has been moved to the method

startSimulationO. In our case, ContactGenerator is the Time-Stepped simulation

component, because once during every step it will calculate a new position for the

imaginary airplane based on the old position and the current settings of the textboxes.

The new position will then be displayed and sent out as a message. All this is done

within a while-loop which executes for the duration of the simulation. At the end

of each while iteration, the call to advanceOneStep 0 ensures, that the simulation

time is being advanced. So the simulation method contains the following code:

public void startSimulationO {

CHAPTER 5. PROGRAMMER'S GUIDE TO CMIF HLA 63

while (simlsRunningO) {

determineNextPositionO ;

displayPanel.repaint 0;
sendContactPositionO ;

advanceOneStepO;

}//end of while loop
}//end of startSimulation

The TacticDisplay is by its nature, i.e. reacting to external input, an Event-Based

experiment participant. Nevertheless, it too has the charateristic simulation while-

loop, but the only task of this loop is to follow the simulation time and correctly

display it for the user.

Now we will have a closer look at how the communications are taken care of. When-

ever a message is delivered to a TacticDisplay, this is done by a callback to the

following method:

public void receivedMessageOnBus(String sender,
String content) {

//first dissect the message content
//and store the coordinates in a point

//...if it is a first_hand contact: test if in radar range
boolean isWithinRange = evaluateRadarRange(contactPoint);
if (isWithinRange) {

//add to the list of previous first-hand contacts
//(used for drawing the x's)
radarContacts.add(contactPoint);

//and rebroadcast the same position report, only

CHAPTER 5. PROGRAMMER'S GUIDE TO CMIF HLA 64

//with "Reported" added to the message header
sendMessageToBus("Reported"+content, "all");

}

//...if it is a second-hand contact, add the point
//to the list of previous second-hand contacts
//(used for drawing the +'s)
reportedContacts.add(contactPoint);

}//end of receivedMessageOnBus

The code snippet has been abbreviated to show only the important steps. Most

interesting is firstly how to generally fill the receivedMessageOnBus method with

life and secondly how to use the sendMessageToBus method, in this case with "all"

as the desired recipients for the message. That means, also the ContactGenerator

will get the message, only that it will not evaluate and use it, since it does not have

an overriden version of receivedMessageOnBus.

In both applications, the other callback methods —updateSimTimeO, timing-

ParametersChangedO, doneWithSimulationO, etc.— do not do much except to

force the user interface to show updated information on the "Simulation" panel.

Last not least, the callback indicating that the contact to the RTI services and

therfore all other experiment participants has successfully been terminated, leads to

the final shut down of the application.

public void doneWithShutDown(){

mainWindow.dispose();
System.exit(0);

}//end of doneWithShutDown

CHAPTER 5. PROGRAMMER'S GUIDE TO CMIF HLA 65

5.4 Putting Everything to Work:

A Simulation Run

Contact Generator

RTI
Background Process

Figure 5.5: Structure of the demo application

In the previous section, the implementation of two experiment participants was

discussed. Now it will be shown, how these applications are started and, together

with the other components of the infrastraucture, are integrated into the simulation

space to form an experiment setup. Then, we will go through the actual process

of conducting a simulation run, step by step from startup to shutdown. Whenever

specific commands are listed, these apply to using the CMIF HLA Environment on

the UNIX (or Linux) platform. The general handling of the system is not different

for the Windows operating systems, although minor adjustments have to be made.

As can be seen in figure 5.5, the configuration will feature one ContactGenerator

CHAPTER 5. PROGRAMMER'S GUIDE TO CMIF HLA 66

and two TacticDisplays. These will both have the same display area, but different

areas of "radar reception" so that the benefit of their data sharing behaviour can be

observed. Also present, of course, will be the RTI background services as well as the

control center. All components will be interconnected through the local area network.

The first step for running an experiment within the CMIF HLA Environment is

always to start the RTI background services. This is done by starting the rtiexec

process on one of the computers that are involved. Just type

kharth<9kadar>$RTIJiOME$RTI_BUILD_TYPE/bin/rtiexec
-endpoint <hostname>:<port number>

at a command line prompt. The parameters <hostname> and <port number> of the

-endpoint option must hereby match those defined in the RTI.rid file or an error

will occur (see section 5.1). It can also be useful to define a shortcut for this, because

this line will be used quite often. As a result, the RTI services are initialized and

remain in the background for all federates to use. The rtiexec is textbased. After

startup it displays only messages about created and destroyed federation executions

and joined or leaving federates. Also, system level error messages are shown, in case

something goes wrong. See figure 5.6 for a sample output of rtiexec.

Now the control center has to be started, prior to all experiment participant com-

ponents, to work on the experiment configuration and later, start the federation

execution. First change to the root directory of the CMIF HLA Environment:

kharth@kadar> cd $JAVA_BINDING_HOME/apps

(or add that path to your Java environment variable CLASSPATH, for convenience) and

then start Java:

CHAPTER 5. PROGRAMMER'S GUIDE TO CMIF HLA 67

Fite C^liow

Hit Ctrl-C to make rtiexec exit

Multicast Discovery Endpoint: 224.9.9.2:22605

Advertising launching service as Launcher/130.83.16.70

rtiexec (process = 2078) initialization complete.

Federation CMIF_HLA_Environment finished initialization with process!
d Endpoint 130.83.16.70:55237

Figure 5.6: Before experiment participants and the control center can hook up with
each other, the background process of the RTI, rtiexec, has to be present. It is
launched from the command line of a terminal window.

kharth@kadar> Java -native CMIF_HLA_Environment/
CMIFControlCenter/CMIFControlCenter

Phase 1: Configuration

Once the main window appears, the experiment configuration can be begun: Open

a new experiment, using the menu Experiment>New, or alternatively, open an ex-

isting one with Experiment Open Old Experiment. If you chose New, you will

be prompted for an experiment name and a short description. While the latter is

optional, the name will also be used as a file name for saving the configuration.

The most important step is to define the list of experiment participants to be ex-

pected in the simulation space. Because the control center is supposed to be in-

dependent of specific experiment setups, it can only be informed at runtime, which

applications will be participating, in order to contact and address them properly when

they arrive in the simulation space. We do this by simply adding the names of the

desired experiment participants to the "Participants to Contact" list. This time it

CHAPTER 5. PROGRAMMER'S GUIDE TO CMIF ELA 68

will be ContactGenerator, Displayl and Display2.

Now we will adjust the experiment timing parameters for our purposes by simply

editing the textboxes in the "Time Management" panel: Let us choose 60.0 seconds

as a new end time for the simulation and set the time step increment to 2.0 seconds.

Important: Changes do not have any effect until the "Update" button is clicked.

With the configuration now completed, the settings can be saved using the menu

item Experiment>Save. The experiment configuration file (.cef) belonging to this

specific configuration can be found in the appendix, section C. Note that all the time

the ongoing configuration phase has correctly been indicated by the blinking green

icon in the "Phases" panel.

Phase 2: RTI Setup

By switching to the next phase (menu: Phases>RTI Setup), the user initiates the

following actions:

• The control center creates the federation execution f edex process for the CMIF

HLA Environment. It also joins the federation (and thus the "simulation

space") as the first participant.

• Now the control center waits for other federates to become present, asks for

their names and compares them to the list of experiment participants to be

contacted.

• Once all the expected experiment participants are located, contacted and have

reported ready for simulation, the control center declares the RTI setup phase

for complete.

CHAPTER 5. PROGRAMMER'S GUIDE TO CMIF HLA 69

This is the point where all other experiment participants have to be launched. Gen-

erally, these are independent from each other and from the control center. They run

in separate processes and can (and in fact should) be located on different computers.

The only rule is, that any experiment participant's doSetupO must not be called

before the control center initiated the federation execution, because the experiment

participants just rely on the f edex to be present. Now we can type (in different

terminal windows or on different machines):

kharth@kadar> Java -native CMIF_HLA_Environment/
CMIFExperimentParticipant/ContactGenerator

kharth@ming> Java -native CMIF_HLA_Environment/
CMIFExperimentParticipant/TacticDisplay Displayl 0 0
30000 20000 10000 10000 8500

kharth@joker> Java -native CMIF_HLA_Environment/
CMIFExperimentParticipant/TacticDisplay Display2 0 0
30000 20000 20000 10000 8500

Here is a key to the long list of command line parameters for the TacticDisplay:

• Name of this experiment participant. This must match the entry in the control

center's list of participants to contact.

• X and Y coordinates of the lower left corner of the display area, in "real life"

units

• Width and Height of the display area

• X and Y coordinates of the radar sensor

• Radius of the circular area of radar reception

CHAPTER 5. PROGRAMMER'S GUIDE TO CMIF HLA 70

Again, it might be useful to put these long commands into batch files, to avoid having

to type them each time anew.

While waiting for the experiment participants to set up their contact to the RTI and

their display components, we can watch how the control center, one by one, discovers

the experiment participants' presence and lists them on the "During Simulation..."

panel. The whole process might take a couple of seconds, depending on system

performance.

After all the negotiations have been completed and all experiment participants re-

ported that they are ready for the simulation run (indicated by the steady green icon

on their "During Simulation..." panel entry), the control center now declares the

RTI Setup phase for completed, accordingly switches the icons on the "Phases" panel

and allows a switching to the next phase.

Before starting the simulation, a more convenient setting for the virtual airplane is

entered, starting position: X = 0, Y = 10000, Velocity = 500 and Heading = 90

to place it in the middle of the left display boundary, going straight to the right.

Phase 3: Simulation Run

The actual simulation execution is started with Phases>Run Simulation. The con-

trol center sends out the "Go" signal to all participating applications and starts pro-

viding the time steps which serve as master time for all experiment participants. In

this case, there is a two second increase in simulation time for every two seconds in real

time. Immediately, the experiment participants start counting their own time, which

should be fairly synchronous to the master time. The ContactGenerator starts dis-

playing and sending the current positions of the airplane. The two TacticDisplays

CHAPTER 5. PROGRAMMER'S GUIDE TO CMIF HLA 71

also start their displaying of first and second-hand contacts, usually lagging one time

step behind the generation of the respective contacts.

During the 60.0 seconds of the simulation run, we can play around by altering

the airplane's course and the TacticDisplays' behaviour regarding the treatment of

"Reported Contacts".

After the Simulation

After the simulation time has elapsed, all participants stop their simulation actions

and wait for further instructions. A red icon with the experiment participants in-

dicates their current stopped status. Now the experiment participant applications

can be killed with their remote shutdown buttons from the control center and the

RTI shutdown phase can be initiated using the menu Phases>RTI Shutdown. After

all RTI services have successfully been terminated, we can, as the last step, exit the

control center.

5.5 A Few Practical Remarks about the Usage of

the CMIF HLA Environment

In the previous section, a sample experiment execution has been discussed. This

was to show how the CMIF HLA Environment and the control center are supposed

to (and in the described configuration actually do) work together. However, with

this very first version of the software, the author cannot guarantee, that it is free of

errors, "dead ends" and illogical behaviour. It is likely, that you will encounter bugs

or that components will "get stuck" in certain situations. While the work on the

CHAPTER 5. PROGRAMMER'S GUIDE TO CMIF HLA 72

CMIF HLA Environment will be continued -to implement some missing features as

well as to eliminate as many of those present problems- right now you should follow

the undermentioned rules in case something goes wrong:

• Since otherwise stable behaviour cannot be guaranteed, all participating por-

grams have to be closed, also the control center and the background processes.

• Check if any processes got stuck, under UNIX with ps -u <username>, under

Windows with the Task-Manager. Look for rtiexec, f edex and Java. If nec-

cessary, they have to be killed manually, using the kill -9 <PID> command.

<PID>, in that case, is the process ID that was listed by the ps command.

• In case of a violent crash, Java writes core files. These are quite large and

should simply be deleted.

If other errors or bugs become known during the course of the development of a new

application that utilizes the CMIF HLA Environment, please contact the author at

Kai.HarthOgmx.de.

Chapter 6

Conclusion

6.1 Assessment of Results

During the implementation of the CMIF HLA Environment, it became more and more

obvious, that the High Level Architecture is a highly sophisticated and professional

product. It proved to be well thought out on the conceptual level (HLA) as well as

on the technical level of the RTI implementation. With its enormous versatility and

flexibility, the problem for a small-scale project like this was rather to grasp what the

RTI all can do, than to actually make it work according to one's own intentions. In

other words, retardations were due to initial misconceptions of the functioning and

not to weaknesses in the HLA concept. In this regard it is helpful, that the RTI is

really well documented.

Although the author makes no claim whatsoever to fully understand and utilize

all concepts and capabilities of the HLA/RTI, it seems like the implementation of

73

CHAPTER 6. CONCLUSION 74

the CMIF HLA Environment was still reasonably successful. The first version seems

to live up to its purposes and provide most of the functionalities that were initially

planned. The control center offers a graphically appealing and mostly self-explanatory

means for the user to operate a distributed simulation experiment within the CMIF

HLA Environment. And the application programming toolkit provides the developer

with access to the RTI resources while maintaining the intended simplicity.

The following table gives a final overview over the mapping between HLA and the

CMIF HLA Environment. It is summarized, how the various concepts of the High

Level Architecture are implemented and substantiated.

High Level Architecture

Objects

any (defined by FOM)

Interactions

any (defined by FOM)

CMIF HLA Environment

(1...n) CMIFExperimentParticipant,

1 RTIControlModule

MessageToBus,

MessageFromBus,

Controllnteraction,

StatusMessage

Timing

Various timing concepts can be imple- Time-scale synchronization with vari-

mented (ref. figure 2.2). able scaling factor Sc and variable step

increment.

CHAPTER 6. CONCLUSION 75

(High Level Architecture) (CMIF HLA Environment)

Timing control is handled flexibly by

having federates declare to be time-

Regulating and timeConstrained.

"Master-Slave" concept: The control

center is timeRegulating and the ex-

periment participants are timeCon-

strained.

Communications

Communications are implemented by

having federates issue interactions, all

common basic data types are usable.

Experiment participants can commu-

nicate by sending MessageToBus and

receiving MessageFromBus, while the

control center exerts remote control by

issuing Controllnteractions.

(data type is always String)

Simulation Behaviour

Event-Based and/or Time-Stepped Event-Based and/or Time-Stepped

Support Tools

Various support tools are available

[DefOOa].

The "CMIF Control Center", featur-

ing functionalities for experiment con-

figuration, control and (in a later ver-

sion) evaluation. The control center

is only usable within the CMIF HLA

Environment.

CHAPTER 6. CONCLUSION 76

(High Level Architecture) (CMIF HLA Environment)

Platforms

Numerous system platforms and sev- All platforms, for which a RTI Java

eral programming languages. binding exists. The programming lan-

guage is limited to Java.

Summary

Flexibility and versatility are high.

Complexity is high.

Flexibility and versatility are reduced,

but tailored to CMIF needs.

Complexity is extremely reduced.

6.2 Future Work

Although a proof-of-concept has been done for the CMIF HLA Environment, this was

only the first step towards a validation of the software. The DemoApplication did

show, that the CMIF API is in fact usable and that the control center does work -but

only on a very undemanding level. Now the software should prove its workableness

through the implementation of the first "real" distributed experiment. One that

contains actual functionality and is focused on coming up with real results, and not

on testing the CMIF HLA Environment functionalities.

Also some work needs to be done on the control center application. Besides the

removal of several internal errors, there are still some intregral functionalities, that

were planned in the initial concept, but could not be implemented yet. Among these

are:

CHAPTER 6. CONCLUSION 77

• Generation of a log file (communications and additional information) during

the simulation run.

• Evaluation (and visualization) of the amount of data being transferred between

the experiment participants.

• Advanced control over the inter experiment participant messaging, e. g. emula-

tion of "bandwidth" limitations; advanced routing possibilities.

Only after these steps have been taken will the CMIF HLA Environment be a

fully developed and usable software package. Then, hopefully, the CMIF HLA En-

vironment will become the basis for and a part of numerous distributed simulation

experiments at CMIF in the future.

Appendix A

The RTI Configuration File
RTI.rid

; This is an example of a small RID file. Please see Sample-RTI.rid
; from the distribution for an exhaustive RID file which includes
; descriptions of the parameters.

(RTI
(ProcessSection
(RtiExecutive
(RtiExecutiveEndpoint kadar.eng.buffalo.edu:12345)

;; remember that rtiexec -endpoint flag must
;; match this, or you'll get NameService errors

)
)

(FederationSection
(Networking
(BundlingOptions
(UDP
;;(MaxTimeBeforeSendlnSeconds 0.005)
;;(MaxBytesBeforeSend 63000)

(TCP
;;(MaxTimeBeforeSendlnSeconds 0.005)
;;(MaxBytesBeforeSend 63000)

)
)
(MulticastOptions
;; having different federations on network use different ranges of
;; multicast addresses will help performance
(BaseAddress 224.100.0.0)
;;(MaxAddress 239.255.255.255)

)
)

(Advisories
;;(RelevanceAdvisoryAttributelnstanceHeartbeatlnSeconds Off)

78

APPENDIX A. THE RTI CONFIGURATION FILE 79

)

(RelevanceAdvisoryAttributelnstanceTimeoutlnSeconds Off)
(RelevanceAdvisorylnteractionClassHeartbeatlnSeconds Off)
(RelevanceAdvisorylnteractionClassTimeoutlnSeconds Off)
(RelevanceAdvisoryObjectClassHeartbeatlnSeconds Off)
(RelevanceAdvisoryObjectClassTimeoutlnSeconds Off)

(FederateSection

PARAMETER: FederateSection.AllowReentrantUpdatesAndlnteractions
DESCRIPTION: If this option is enabled, federates will be able
to invoke updateAttributesValues, sendlnteraction,
requestClassAttributeValueUpdate, and
requestObjectAttributeValueUpdate from within FederateAmbassador
callbacks.
RANGE: An enumeration value {Yes, No}.

.,DEFAULT_VALUE: No
(ÄllowReentrantUpdatesAndlnteractions Yes)

(EventRetractionHandleCacheOptions
;; the next two options will disable event retractions, which is
;; OK since helloworld doesn't use them
(MinimumCacheSizeBeforePerformingPurge 0)
(NumberOfEventRetractionHandlesToCreateBeforeStartingNewPurgeCycle 0)

)
)

Appendix B

The Federation Configuration File
CMIF_HLA_Environment.fed

(FED
(Federation CMIF_HLA_Environment)
(FEDversion vl.3)
(spaces

(space thefinalfrontier
(dimension x)
(dimension y)
(dimension z)
(dimension time)

)
(space a

(dimension x)
(dimension y)

)
(space b

(dimension x)
(dimension y)
(dimension z)

)
(space c

(dimension x)
)
(space ip_space

(dimension subnet)
)

)
(objects

(class ObjectRoot
(attribute privilegeToDelete reliable timestamp A)
(class RTIprivate)
(class Manager

(class Federate
(attribute FederateHandle reliable receive)
(attribute FederateType reliable receive)
(attribute FederateHost reliable receive)
(attribute RTIversion reliable receive)
(attribute FEDid reliable receive)

80

APPENDIX B. THE FED FILE CMIFMLA-ENVIRONMENT.FED 81

(attribute TimeConstrained reliable receive)
(attribute TimeRegulating reliable receive)
(attribute AsynchronousDelivery reliable receive)
(attribute FederateState reliable receive)
(attribute TimeManagerState reliable receive)
(attribute FederateTime reliable receive)
(attribute Lookahead reliable receive)
(attribute LBTS reliable receive)
(attribute MinNextEventTime reliable receive)
(attribute ROlength reliable receive)
(attribute TSOlength reliable receive)
(attribute ReflectionsReceived reliable receive)
(attribute UpdatesSent reliable receive)
(attribute InteractionsReceived reliable receive)
(attribute InteractionsSent reliable receive)

(class Federation
(attribute FederationName reliable receive)
(attribute FederatesInFederation reliable receive)
(attribute RTIversion reliable receive)
(attribute FEDid reliable receive)
(attribute LastSaveName reliable receive)
(attribute LastSaveTime reliable receive)
(attribute NextSaveName reliable receive)
(attribute NextSaveTime reliable receive))

user object classes here
(class RTIControlModule

(attribute Experimentstate reliable timestamp)
)
(class CMIFExperimentParticipant

(attribute ParticipantName reliable timestamp)
(attribute ParticipantState reliable timestamp)

)
)

)
(interactions

(class InteractionRoot reliable receive
(class RTIprivate reliable receive)
(class Manager reliable receive

(class Federate reliable receive
(parameter Federate)
(class Adjust reliable receive

(class SetTiming reliable receive
(parameter ReportPeriod))

(class ModifyAttributeState reliable receive
(parameter ObjectInstance)
(parameter Attribute)
(parameter AttributeState))

(class SetServiceReporting reliable receive
(parameter ReportingState))

(class SetExceptionLogging reliable receive
(parameter LoggingState))

(class Request reliable receive

APPENDIX B. THE FED FILE CMIF.HLA_ENVIRONMENT.FED 82

(class RequestPublications reliable receive)
(class RequestSubscriptions reliable receive)
(class RequestObjectsOwned reliable receive)
(class RequestObjectsUpdated reliable receive)
(class RequestObjectsReflected reliable receive)
(class RequestUpdatesSent reliable receive)
(class RequestlnteractionsSent reliable receive)
(class RequestReflectionsReceived reliable receive)
(class RequestlnteractionsReceived reliable receive)
(class RequestObjectlnformation reliable receive

(parameter ObjectInstance))

(class Report reliable receive
(class ReportObjectPublication reliable receive

(parameter NumberOfClasses)
(parameter ObjectClass)
(parameter AttributeList))

(class ReportlnteractionPublication reliable receive
(parameter InteractionClassList))

(class ReportObjectSubscription reliable receive
(parameter NumberOfClasses)
(parameter ObjectClass)
(parameter AttributeList)
(parameter Active))

(class ReportlnteractionSubscription reliable receive
(parameter InteractionClassList))

(class ReportObjectsOwned reliable receive
(parameter ObjectCounts))

(class ReportObjectsUpdated reliable receive
(parameter ObjectCounts))

(class ReportObjectsReflected reliable receive
(parameter ObjectCounts))

(class ReportUpdatesSent reliable receive
(parameter TransportationType)
(parameter UpdateCounts))

(class ReportReflectionsReceived reliable receive
(parameter TransportationType)
(parameter ReflectCounts))

(class ReportlnteractionsSent reliable receive
(parameter TransportationType)
(parameter InteractionCounts))

(class ReportlnteractionsReceived reliable receive
(parameter TransportationType)
(parameter InteractionCounts))

(class ReportObjectlnformation reliable receive
(parameter Objectlnstance)
(parameter OwnedAttributeList)
(parameter RegisteredClass)
(parameter KnownClass))

(class Alert reliable receive
(parameter AlertSeverity)
(parameter AlertDescription)
(parameter AlertID))

(class ReportServicelnvocation reliable receive
(parameter Service)
(parameter Initiator)

APPENDIX B. THE FED FILE CMIFJILA-ENVIRONMENT.FED 83

(parameter Successlndicator)
(parameter SuppliedArgumentl)
(parameter SuppliedArgument2)
(parameter SuppliedArgument3)
(parameter SuppliedArgument4)
(parameter SuppliedArgument5)
(parameter ReturnedArgument)
(parameter ExceptionDescription)
(parameter ExceptionID))

(class Service reliable receive
(class ResignFederationExecution reliable receive

(parameter ResignAction))
(class SynchronizationPointAchieved reliable receive

(parameter Label))
(class FederateSaveBegun reliable receive)
(class FederateSaveComplete reliable receive

(parameter Successlndicator))
(class FederateRestoreComplete reliable receive

(parameter Successlndicator))
(class PublishObjectClass reliable receive

(parameter ObjectClass)
(parameter AttributeList))

(class UnpublishObjectClass reliable receive
(parameter ObjectClass))

(class PublishlnteractionClass reliable receive
(parameter InteractionClass))

(class UnpublishlnteractionClass reliable receive
(parameter InteractionClass))

(class SubscribeObjectClassAttributes reliable receive
(parameter ObjectClass)
(parameter AttributeList)
(parameter Active))

(class UnsubscribeObjectClass reliable receive
(parameter ObjectClass))

(class SubscribelnteractionClass reliable receive
(parameter InteractionClass)
(parameter Active))

(class UnsubscribelnteractionClass reliable receive
(parameter InteractionClass))

(class DeleteObjectlnstance reliable receive
(parameter Objectlnstance)
(parameter FederationTime)
(parameter Tag))

(class LocalDeleteObjectlnstance reliable receive
(parameter Objectlnstance))

(class ChangeAttributeTransportationType reliable receive
(parameter Objectlnstance)
(parameter AttributeList)
(parameter TransportationType))

(class ChangeAttributeOrderType reliable receive
(parameter Objectlnstance)
(parameter AttributeList)
(parameter OrderingType))

(class ChangelnteractionTransportationType reliable receive
(parameter InteractionClass)

APPENDIX B. THE FED FILE CMIF-HLA.ENVIRONMENT.FED 84

(parameter TransportationType))
(class ChangelnteractionOrderType reliable receive

(parameter InteractionClass)
(parameter OrderingType))

(class UnconditionalAttributeOwnershipDivestiture receive
(parameter Objectlnstance)
(parameter AttributeList))

(class EnableTimeRegulation reliable receive
(parameter FederationTime)
(parameter Lookahead))

(class DisableTimeRegulation reliable receive)
(class EnableTimeConstrained reliable receive)
(class DisableTimeConstrained reliable receive)
(class EnableAsyncbxonousDelivery reliable receive)
(class DisableAsynchronousDelivery reliable receive)
(class ModifyLookahead reliable receive

(parameter Lookahead))
(class TimeAdvanceRequest reliable receive

(parameter FederationTime))
(class TimeAdvanceRequestAvailable reliable receive

(parameter FederationTime))
(class NextEventRequest reliable receive

(parameter FederationTime))
(class NextEventRequestAvailable reliable receive

(parameter FederationTime))
(class FlushQueueRequest reliable receive

(parameter FederationTime))

user interaction classes here
(class Controllnteraction reliable timestamp

(parameter ControlMessageContent)
(parameter ControlMessageRecipient)

(class MessageToBus reliable timestamp
(parameter ToBusMessageContent)
(parameter ToBusSender)
(parameter ToBusRecipient)

(class MessageFromBus reliable timestamp
(parameter FromBusMessageContent)
(parameter FromBusSender)
(parameter FromBusRecipient)

(class StatusMessage reliable timestamp
(parameter StatusMessageContent)
(parameter StatusMessageSender)

)

Appendix C

A Sample Experiment
Configuration (.cef) File

CMIF_HLA_ENVIROMENT #

Experiment Data File #
#===================: #

#Generated File! Edit only if you know what you are doing.

#general info

»author-Charth}

»name{CMIFDemoApplication01}

»description{A simple Demo Application involving

a "ContactGenerator", sending contact signals and

two "TacticDisplay"s, which receive the contact

information, display it and interact with each other}

time management

»start _time{0.0}

»end_time{60.0>

»interval_time{2.0}

>>scale{1.0}

participants

85

APPENDIX C. A SAMPLE EXPERIMENT CONFIGURATION FILE 86

»participant _num{3}
»participant{l, ContactGenerator}
»participant{2, Displayl}
»participant{3, Displays-

Send of configuration file

Appendix D

Sourcecodes of the Java classes

D.l The package CMIFControlCenter

D.l.l The Class CMIFControlCenter.java

//_.. /
//CMIF HLA_Environment vl.OO, 7/2000 /
// /
//This is part of a Master's Thesis at the /
//Center for Multisource Information Fusion /
//SUNY at Buffalo /
// /
//All rights reserved: /
//packages CMIFControlCenter, CMIFExperimentParticipant,/
// util
//packages hla.rtil3.javal
//packages Java, javax

CMIF, Kai Harth /
U.S. DoD /
Sun Microsystems /

// /

package CMIF_HLA_Environment.CMIFControlCenter;

import CMIF_HLA_Environment.util.*;
import CMIF_HLA_Environment.CMIFExperimentParticipant.*;

import hla.rti13.javal.*;

import java.awt.event.*;
import javax.swing.Box;

//====
//====

public class CMIFControlCenter

implements ActionListener

//The class CMIFControlCenter is the central class for the
//CMIF HLa environment. It implements the "White" Control

87

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 88

//Center used to setup, control and monitor experiments.

//static variables:

public static int IDLE = 0;
public static int SETUP.EXPERIMENT = 1;
public static int SETUP.RTI = 2;
public static int RUN_EXPERIMENT = 3;
public static int CLEANUP RTI = 4;
public static int POST EXPERIMENT = 5;
public static int READY_F0R_SHUTD0WN = 6;

//instance variables:

public DebugHelper D = new DebugHelper ();

public CMIFControlDisplay CCDisplay;
public CMIFExperimentManager CCManager;
public RTIControlModule rModule;

public int cCenterState;

//=
//=

public static void main(String argv[]) {

//The main() method is mandatory for starting a Java
//application. From here an instance of CMIFControlCenter
//will be instanciated.

CMIFControlCenter CCenter = new CMIFControlCenter();

CCenter.initO ;

}//end of main

//=
//=

public CMIFControlCenter () {

//Empty contructor to create an instance of CMIFControlCenter

D.dbgOutCStarted CMIFControlCenter ");
D.setDebugState(DebugHelper.FULL_DEBUG);

}//end of contructor

//====
//====

public void init() {

//init() will organize:
//-instanciation of all major parts of the CMIFControlCenter
// Experiment manager, display

D.dbgOut("$#Method: CMIFControlCenter.init()");

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 89

CCManager = new CMIFExperimentManager(this);

CCDisplay = new CMIFControlDisplay(this);

rModule = new RTIControlModule(this);

cCenterState=CMIFControlCenter.IDLE;

CCDisplay.messageOut("Welcome to the CMIF HLA Control Center!");
CCDisplay.messageOutC");
CCDisplay.messageOut("To get started either load an existing experiment");
CCDisplay.messageOut("or create a new experiment setup...");

}//end of init()

//=
//=

private boolean readyForShutdownO {

//This method evaluates cCenterState and returns
//whether the Control Center is in a state that allows
//shutdown...

boolean allow = false;

allow = (cCenterState==IDLE);

//for the time being...
allow = true;

return allow;

}//end of readyForShutdown

//=
//=

private void exitControlCenterO {

//This Method coordinates the final shutdown of the
//control center. It has to be checked if all conditions
//are met to allow the clean shutdown

if (readyForShutdownO) {

D.dbgOut("$Method: CMIFControlCenter.exitControlCenterO");

rModule.runTickThread=false;

CCDisplay.dispose();

System.exit(0);

} else {

CCDisplay.messageOut("The current state of the control center does not");
CCDisplay.messageOut("allow shutdown!");
CCDisplay.messageOut("Please abort and close the current "+

"experiment first.");

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 90

}

}//end of exitControlCenter

//
//
//
// Listener
//

■//

public void actionPerformed(ActionEvent event) {

String command = event.getActionCommandO;

D.dbgOut("ControlCenter.actionPerformed() received: " + command);

if (command.equals("exit_control_center")){

exitControlCenter();

}

//

if (command, equals ("clear„messages")M
CCDisplay.messageOutO1 '/.flush");

}

// _

//

if (command.equals("display_about_text")){
CCManager.displayAboutText();

//

if (command.equals("new_experiment")){
CCManager.configureNewExperiment();

//

if (command.equals("save_experiment")){

ExperimentFileHandler.saveExperimentFile(CCManager);

//

if (command.equals("open_experiment")){

ExperimentFileHandler.loadExperimentFile(CCManager);

//
//
//phases:

if (command.equals("configure_experiment")){

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 91

if (cCenterState==POST_EXPERIMENT) {

cCenterState=SETUP_EXPERIMENT;
CCDisplay.setPhaselconsC'config", "grn_pulse");
CCDisplay.setPhaseIcons("simulation", "red");
CCDisplay.setPhaselconsC'rticleanup", "red");

} else if (cCenterState==IDLE II cCenterState==READY_FOR_SHUTDOWN) {
CCDisplay.messageOutC") ;
CCDisplay.messageOut("Please open a new or existing experiment!");

} else if (cCenterState==SETUP_EXPERIMENT) {
CCDisplay.messageOutC") ;
CCDisplay.messageOut("Already there...");

} else {
CCDisplay.messageOutC"');
CCDisplay.messageOut("The current state does not allow this "+

"operation!");
}

CCDisplay.switchToState(cCenterState);
}

//

if (command.equals("run_rti_setup")){

if (cCenterState==POST_EXPERIMENT) {

cCenterState=SETUP_RTI;
CCDisplay.setPhaselconsC'config", "grn");
CCDisplay.setPhaselconsC'rtisetuo", "grn_pulse");
CCDisplay.setPhaselconsC'simulation", "red");
CCDisplay.setPhaselconsC'rticleanup", "red");

} else if (cCenterState==SETUP_EXPERIMENT) {

if (CCManager.configCompleteO) {

CCDisplay.messageOutC"');
CCDisplay.messageOut("Attempting to set up the RTI and "+

"all participants.—");
CCDisplay.messageOut("This could take a few moments.");
CCDisplay.setPhaselconsC'rtisetup", "grn_pulse");
CCDisplay.setPhaselconsC'config", "grn");

cCenterState=SETUP_RTI;

//CCDisplay.phasesInnerPanel.validate();

CCDisplay.plnnerPanel.removeAll();
CCDisplay.plnnerPanel.add(Box.createVerticalGlue());

final SwingWorker worker = new SwingWorkerO {
public Object construct() {

//...code that might take a while
//to execute is here...

rModule.launchRTI();
rModule.runPreSimulationO;

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 92

if (rModule.rtiState==rModule.RTI_RUNNING) {

CCDisplay.setPhaselcons("rtisetup",
"grn");

CCDisplay.setPhaselcons("simulation",
"orange");

CCDisplay.setPhaselcons("rticleanup",
"orange");

}
return null;

};
worker.start();

} else { ,

CCDisplay.messageOutC");
CCDisplay.messageOut ("The experiment configuration is not "+

"complete yet.");
CCDisplay.messageOut("Please make sure you defined:");
CCDisplay.messageOutC'—> time management,");
CCDisplay.messageOutC1—> participants and");
CCDisplay.messageOutC—> communications.");

} else if (cCenterState==IDLE || cCenterState==READY_FOR_SHUTDGWN) {
CCDisplay.messageOutC'");
CCDisplay.messageOutC'Please open a new or existing experiment!");

} else if (cCenterState==SETUP_RTI) {
CCDisplay.messageOutC"');
CCDisplay.messageOut("The RTI setup is already in progress.."+

"this might take a while!");

> else {
CCDisplay.messageOutC'");
CCDisplay.messageOutC'The current state does not allow "+

"this operation!");

CCDisplay.switchToState(cCenterState);

}

//

if (command.equals("run_simulation")){

if ((cCenterState==SETUP_RTI) bk (rModule.simState==rModule.SIM_READY)) {

CCDisplay.messageOutC'");
CCDisplay.messageOut("Trying to start the simulation...");

CCDisplay.setPhaselconsC'rtisetup", "grn");
CCDisplay.setPhaselconsC'simulation", "grn_pulse");

cCenterState=RUN_EXPERIMENT;

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 93

//...what else??

rModule.runSimulation();

} else {

CCDisplay.messageOutC"');
CCDisplay.messageOutC'The current state does not allow "+

"this operation!");

}

//
//

if (command.equals("abort.simulation")){

if (cCenterState==RUN_EXPERIMENT) {

CCDisplay.messageOutO"1) ;
CCDisplay.messageOutC'Aborting the simulation...");

CCDisplay.setPhaselconsC'rtisetup", "grn");
CCDisplay.setPhaseIcons("simulation", "orange");
CCDisplay.setPhaselconsC'rticleanup", "orange");

cCenterState=POST_EXPERIMENT;

//...what else??

rModule.abortSimulationO;

} else {

CCDisplay.messageOutC") ;
CCDisplay.messageOut("The current state does not allow "+

"this operation!");

}
}
//

if (command.equals("cleanup_rti")){

if (cCenterState!=POST_EXPERIMENT) {

CCDisplay.messageOutC'") ;
CCDisplay.messageOut("Shutting down the RTI...");

CCDisplay.setPhaselconsC'rtisetup", "orange");
CCDisplay.setPhaseIcons("simulation", "red");
CCDisplay.setPhaselconsC'rticleanup", "grn_pulse");

rModule.rtiState=rModule.RTI_SHUTDOWN;

while(rModule.rtiState!=rModule.RTI_D0WN) {
}

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 94

cCenterState=IDLE;

} eise {

CCDisplay.messageOutC");
CCDisplay.messageOutC'The current state does not allow "+

"this operation!");

}
}

}//end of actionPerformed

};//end of class CMIFControlCenter

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 95

D.I.2 The Class CMIFControlDisplay.java

// -/
//CMIF HLA Environment vl.OO, 7/2000 /
// /
//This is part of a Master's Thesis at the /
//Center for Multisource Information Fusion /
//SUNY at Buffalo /
// /
//All rights reserved: /
//packages CMIFControlCenter, CMIFExperimentParticipant ,/
// util : CMIF, Kai Harth /
//packages hla.rtil3.javal : U.S. DoD /
//packages Java, javax : Sun Microsystems /
// -/

package CMIF_HLA_Environment.CMIFControlCenter;

import CMIF_HLA_Environment.util.*;

import javax.swing.*;
import j avax.swing.border.*;
import j ava.awt.*;
import j ava.awt.event.*;

import Java.util.Properties;

//=
//=

public class CMIFControlDisplay extends JFrame

{

//The class CMIFControlDisplay provides the ControlCenter with all
//necessary display elements, sets up the main frame and keeps track of
//updated etc.

//instance variables

CMIFControlCenter parentCCenter;

DebugHelper D = new DebugHelper();

public JMenuBar menuBar;

JMenu experimentMenu, editMenu;
public JMenu phasesMenu;

JSplitPane mainSplitPane, rightSplitPane, leftSplitPane, participantsSplitPane;

JTabbedPane topRightTabbedPane;

JPanel channelsPanel, communicationsPanel,
timePanel, phasesPanel, messagePanel, upperLeftPanel, infoPanel,
pConfigPanel, pSimulationPanel, plnnerPanel;

public JPanel phasesInnerPanel;

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 96

public JLabel infoLabel;

JTextArea messageTextArea;

public JTextField startTimeTF, endTimeTF, intervalTF,
scaleTF, masterTimeTF;

Dimension screenDimension, windowDimension;
Point windowPosition;

//icons and bullets

String path = new String("CMIF_HLA_Environment/CMIFControlCenter/icons/");

Imagelcon greenlcon = new ImageIcon(path+"grn.gif");
Imagelcon greenlconPulse = new ImageIcon(path+"grn_pulse.gif");
Imagelcon redlcon = new ImageIcon(path+"red.gif");
Imagelcon redlconPulse = new ImageIcon(path+"red_pulse.gif");
Imagelcon orangelcon = new Imagelcon(path+"orange.gif");
Imagelcon orangelconPulse = new Imagelcon(path+"orange_pulse.gif");

Border lineBorder = BorderFactory.createLineBorder(Color.black, 2);
Border emptyBorder = BorderFactory.createEmptyBorder(8,8,8,8) ;

JLabel configLabel, rtiSetupLabel, simulationLabel, rtiCleanupLabel,
shutdownLabel;

JScrollPane listScrollPane;

JButton updateButton, addButton, modifyButton, deleteButton;

public CMIFControlDisplay (CMIFControlCenter parent) {

//Constructor to create an instance of CMIFControlDisplay.
//The superclass JFrame is instanciated, the control center
//is made accessible by keeping a handle (parentCenter) to it
//and the method createMainWindowLayoutO is invoked.

super("CMIF HLA Control Center");

parentCCenter = parent;

D.dbgOut("Started CMIFControlDisplay ");
D.setDebugState(DebugHelper.NO.DEBUG);

createMainWindowLayoutO;

}//end of contructor

private void createMainWindowLayoutO {

//This mehtod creates the main window and its top level components,
//the splitpanes etc. and then delegates to the methods responsible
//for all the subcomponents

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 97

D.dbgOut("$Method CMIFControlDisplay.createMainWindowLayout()");

getContentPane().setLayout(new BorderLayout());

createMenuBarO;

mainSplitPane = new JSplitPane(JSplitPane.HORIZONTAL_SPLIT);
mainSplitPane.setDividerSize(10);

rightSplitPane = new JSplitPane(JSplitPane.VERTICAL_SPLIT);
rightSplitPane.setDividerSize(5);

leftSplitPane = new JSplitPane(JSplitPane.VERTICAL_SPLIT);
leftSplitPane.setDividerSize(O);
leftSplitPane.setBorder(emptyBorder);

getContentPane().add(mainSplitPane, BorderLayout.CENTER);

createLeftSplitPaneO ;

createRightSplitPaneO;

mainSplitPane.add(leftSplitPane);
mainSplitPane.add(rightSplitPane);

setComponentsSizesO;

//pack();
showO;

}//end of createMainWindowLayout()

//================================== = ============
//===

private void createMenuBarO {.

//This Method creates the components and puts together
//the control center's menu bar.
//It has the following entries:
//-Exper iment
// >New
// >0pen
// >Close
// >Save
// >Exit
//-Edit
// >

D.dbgOut("$Method CMIFControlDisplay.createMenuBarO");

menuBar = new JMenuBarO;

//
//Experiment menu:

experimentMenu = new JMenu("Experiment");

JMenuItem newMenuItem = new JMenuItem("New");
JMenuItem openMenuItem = new JMenuItem("Open Old Experiment");

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 98

JMenuItem closeMenuItem = new JMenuItem("Close Current Experiment");
JMenuItem saveMenuItem = new JMenuItem("Save Configuration");
JMenuItem saveAsMenuItem = new JMenuItem("Save As...");
JMenuItem exitMenuItem = new JMenuItem("Exit");

newMenuItem.setActionCommand("new_experiment");
newMenuItem.addActionListener((ActionListener)parentCCenter);
openMenuItem.setActionCommand("open_experiment");
openMenuItem.addActionListener((ActionListener)parentCCenter);
closeMenuItem.setActionCommand("close_experiment");
closeMenuItem.addActionListener((ActionListener)parentCCenter);
saveMenuItem.setActionCommand("save_experiment");
saveMenuItem.addActionListener((ActionListener)parentCCenter);
saveAsMenuItem.setActionCommand("save_experiment_as");
saveAsMenuItem.addActionListener((ActionListener)parentCCenter);
exitMenuItem.setActionCommand("exit_control_center");
exitMenuItem.addActionListener((ActionListener)parentCCenter);

experimentMenu.add(newMenuItem);
experimentMenu.add(openMenuItem);
experimentMenu.add(closeMenuItem);

experimentMenu.addSeparator();

experimentMenu.add(saveMenuItem);
experimentMenu.add(saveAsMenuItem);

experimentMenu.addSeparatorO;

experimentMenu.add(exitMenuItem);

//
//Edit menu:
editMenu = new JMenu("Edit");

//
//Phases menu:

phasesMenu = new JMenu("Phases");

JMenuItem configurationMenuItem = new JMenuItem("Configure Experiment");
JMenuItem RTISetupMenuItem = new JMenuItem("Setup RTI Execution");
JMenuItem runMenuItem = new JMenuItem("Run Simulation");
JMenuItem abortMenuItem = new JMenuItem("Abort Simulation");
JMenuItem cleanupMenuItem = new JMenuItem("Clean Up RTI");

configurationMenuItem.setActionCommandC'configure_experiment");
configurationMenuItem.addActionListener((ActionListener)parentCCenter);
RTISetupMenuItem.setActionCommand("run_rti_setup");
RTISetupMenuItem.addAetionListener((ActionListener)parentCCenter);
runMenuItem.setActionCommand("run_simulation");
runMenuItem.addActionListener((ActionListener)parentCCenter);
abortMenuItem.setActionCommand("abort_simulation");
abortMenuItem.addActionListener((ActionListener)parentCCenter);
cleanupMenuItem.setActionCommand("cleanup_rti");
cleanupMenuItem.addActionListener((ActionListener)parentCCenter);

phasesMenu.add(new JLabel("Go to...."));

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 99

phasesMenu.add(configurationMenuItem);
phasesMenu.add(RTISetupMenuItem);
phasesMenu.add(runMenuItem);
phasesMenu.add(abortMenuItem);
phasesMenu.add(cleanupMenuItem);

//put together:

menuBar.add(experimentMenu);
menuBar.add(editMenu);
menuBar.add(phasesMenu) ;

setJMenuBar(menuBar);

}//end of createMenuBarO

//===
//= ===

private void createLeftSplitPaneO {

//This Method creates and puts together the left side
//contents of the display

D.dbgOut("$Method CMIFControlDisplay. createLeftSplitPaneO");

//
//top part:

upperLeftPanel = new JPanel(new BorderLayoutO);

infoPanel = new JPanelO;
infoPanel.setLayout(new BoxLayout(infoPanel, BoxLayout.Y_AXIS));
infoPanel.setBorder(BorderFactory.

createTitledBorder(lineBorder, "Info"));

createlnf oPanelO;

timePanel = new JPanelO;
timePanel.setBorder(BorderFactory.

createTitledBorder(lineBorder, "Time Management"));

createTimePanelO;

//
//bottom part:

phasesPanel = new JPanelO;
phasesPanel.setBorder(BorderFactory.

createTitledBorder(lineBorder, "Experiment Phases"));

createPhasesPanelO;

//
//together:

upperLeftPanel.add(infoPanel, BorderLayout.NORTH);
upperLeftPanel.add(timePanel, BorderLayout.CENTER);

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 100

leftSplitPaiie.setLeftComponent(upperLeftPanel);
leftSplitPane.setRightComponent(phasesPanel);

37/end of createLeftSplitPane

//===
//== ==

private void createlnfoPanelO {

//This Method creates the panel that dsiplays the name of the current
//experiment and provides a button to access the "about" dialog...

JPanel topPanel = new JPanelO;

infoLabel = new JLabel(parentCCenter.CCManager.experimentNameString);
infoLabel.setForeground(Color.black);

topPanel.add(new JLabel("Name: "));
topPanel.add(infoLabel);

JButton aboutButton = new JButton("About...");
aboutButton.addActionListener((ActionListener)parentCCenter);
aboutButton.setActionCommand("display_about_text");
aboutButton.setAlignmentX(Component.CENTER.ALIGNMENT);

infoPanel.add(topPanel);
infoPanel.add(aboutButton);

}//end of createlnfoPanel

//========================^ ==========================
//=================== ===============================

private void createTimePanelO {

//This Method creates the panel shows disserent aspects of
//time management and controls for it.

D.dbgOut("$#Method CMIFControlDisplay.createTimePanelO");

timePanel.setLayout(new BorderLayout());

JPanel timePanel2 = new JPanelO;

timePanel2.setLayout(new GridLayout(5,2, 5, 10));

int columns = 8;

masterTimeTF = new JTextField("0.00", columns);
masterTimeTF.setHorizontalAlignment(JTextField.RIGHT);
masterTimeTF.setEnabled(false);
masterTimeTF.setDisabledTextColor(Color.black);

startTimeTF = new JTextField(parentCCenter.CCManager.startTimeString,
columns);

startTimeTF.setHorizontalAlignment(JTextField.RIGHT);

endTimeTF = new JTextField(parentCCenter.CCManager.endTimeString,

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 101

columns);
endTimeTF.setHorizontalAlignment(JTextField.RIGHT);

intervalTF = new JTextField(parentCCenter.CCManager.intervalTimeString,
columns);

intervalTF.setHorizontalAlignment(JTextField.RIGHT);

scaleTF = new JTextField(parentCCenter.CCManager.scaleString,
columns);

scaleTF.setHorizontalAlignment(JTextField.RIGHT);

timePanel2.add(new JLabel("Master Time: ", JLabel.RIGHT));
timePanel2.add(masterTimeTF);

timePanel2.add(new JLabel("Start: ", JLabel.RIGHT));
timePanel2.add(startTimeTF);

timePanel2.add(new JLabelC'End: ", JLabel.RIGHT));
timePanel2.add(endTimeTF);

timePanel2.add(new JLabel("Interval: ", JLabel.RIGHT));
timePanel2.add(intervalTF);

timePanel2.add(new JLabel("Scale: ", JLabel.RIGHT));
timePanel2.add(scaleTF);

updateButton = new JButton("Update");
updateButton.addActionListener((ActionListener)parentCCenter.CCManager);
updateButton.setActionCommand("update_time_management");

timePanel.add(timePanel2, BorderLayout.CENTER);
timePanel.add(updateButton,BorderLayout.SOUTH);

}//end of createTimePanelO

private void createPhasesPanelO {

//This Method creates the panel that displays the state of the
//simulation.

D.dbgOut("$#Method CMIFControlDisplay.createPhasesPanelO");

phasesPanel.setLayout(new BoxLayout(phasesPanel, BoxLayout.Y_AXIS));

phases InnerPanel = new JPanelO;
phasesInnerPanel.setLayout(new GridLayout(5,2,5,10));

configLabel = new JLabel(orangelcon);
phasesInnerPanel.add(configLabel);
phasesInnerPanel.add(new JLabel("Configration"));

rtiSetupLabel= new JLabel(redlcon);
phasesInnerPanel.add(rtiSetupLabel);
phasesInnerPanel.add(new JLabelC'RTI Setup"));

simulationLabel = new JLabel(redlcon);

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 102

phasesInnerPanel.add(simulationLabel);
phasesInnerPanel.add(new JLabeK"Simulation Run"));

rtiCleanupLabel = new JLabel(redlcon);
phasesInnerPanel.add(rtiCleanupLabel);
phasesInnerPanel.add(new JLabel("RTI Cleanup"));

shutdownLabel = new JLabel(orangelcon);
phasesInnerPanel.add(shutdownLabel);
phasesInnerPanel.add(new JLabeK"Shutdown"));

phasesPanel.add(phasesInnerPanel);
phasesPanel.add(Box.createVerticalGlueO);

}//end of createPhasesPanelO

private void createRightSplitPaneO {

//This method creates and populates the right part of the
//display window

D.dbgOut("$Method CMIFControlDisplay.createRightSplitPane()");

//
//top part:

topRightTabbedPane = new JTabbedPaneO;

participantsSplitPane = new JSplitPane(JSplitPane.VERTICAL_SPLIT);

//participantsSplitPane.setBorder(emptyBorder);
participantsSplitPane.setDividerSize(1);

channelsPanel = new JPanelO;
channelsPanel.setBorder(emptyBorder);

communicationsPanel = new JPanelO;
communicationsPanel.setBorder(emptyBorder);

topRightTabbedPane.addTab("Experiment Participants",
participantsSplitPane);

topRightTabbedPane.addTabC'Channels", channelsPanel);
topRightTabbedPane.addTab("Communications", communicationsPanel);

createParticipantsSplitPaneO;
createChannelsPanelO;
createCommunicationsPanelO;

rightSplitPane.setLeftComponent(topRightTabbedPane);

//
//bottom part:

messagePanel = new JPanelO;

createMessagePanelO ;

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 103

rightSplitPane.setRightComponent(messagePanel);

}//end of createRightSplitPane

//=
//=

private void createParticipantsSplitPaneO {

//This method creates the panel that lists
//all participants of the current experiment, gives information
//about their state and allows some control

D.dbgOut("$#Method CMIFControlDisplay.createParticipantsPanelO");

//
//configuration panel

pConfigPanel = new JPaneKnew GridLayout(l,2));

pConf igPanel.setBorder(BorderFactory.
createTitledBorder(lineBorder,

"Participants to contact..."));
((GridLayout)pConfigPanel.getLayoutO).setHgap(lO);

parentCCenter.CCManager.participantsConfigList.setVisibleRowCount(4);

parentCCenter.CCManager.
part i c ipant sConf igL i st.
setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

listScrollPane =
new JScrollPane(parentCCenter.CCManager.participantsConfigList,

ScrollPaneConstants.VERTICAL_SCROLLBAR_AS_NEEDED,
ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);

listScrollPane.setBorder(emptyBorder);

JPanel buttonPanel = new JPanelO;
//buttonPanel.setLayout(new BoxLayout(buttonPanel, BoxLayout.Y_AXIS));
buttonPanel.setLayout(new FlowLayout(FlowLayout.LEFT));

addButton = new JButton("Add");
addButton.addActionListener((ActionListener)parentCCenter.CCManager);
addButton.setActionCommand("add_participant");

modifyButton = new JButton("Modify");
modifyButton.addActionListener((ActionListener)parentCCenter.CCManager);
modifyButton.setActionCommand("modify_participant");

deleteButton = new JButton("Delete");
deleteButton.addActionListener((ActionListener)parentCCenter.CCManager);
deleteButton.setActionCommand("delete_participant");

//buttonPanel.add(Box.createVerticalGlue());
buttonPanel.add(addButton);
buttonPanel.add(modifyButton);
buttonPanel.add(deleteButton);
buttonPanel.add(Box.createVerticalGlue());

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 104

pConfigPanel.add(listScrollPane);
pConfigPanel.add(buttonPanel);

//
//simulation panel

pSimulationPanel = new JPanelO;

pSimulationPanel.
setLayout(new BoxLayout(pSimulationPanel,BoxLayout.Y_AXIS));

pSimulationPanel.
setBorder(BorderFactory.createTitledBorder(lineBorder,

"During Simulation..."));
plnnerPanel = new JPanelO;
plnnerPanel.setLayout(new BoxLayout(plnnerPanel, BoxLayout.Y.AXIS));

plnnerPanel.
add(new JLabel

("...will be filled once the participants "+
"are successfully contacted!"));

plnnerPanel.add(Box.createVerticalGlueO);

pSimulationPanel.add(plnnerPanel);

//

participantsSplitPane.setLeftComponent(pConfigPanel);
participantsSplitPane.setRightComponent(pSimulationPanel);

}//end of createParticipantsPanelO

//ZZZ—

private void createChannelsPanelO {

//This Method creates the panel that lists all available communication
//cannels, busses etc, their state and allows some control.

D.dbgOut("$#Method CMIFControlDisplay.createChannelsPanelO");

channelsPanel.setLayout(new GridLayout(2,1));

}//end of createChannelsPanelO

//=
//=

private void createCommunicationsPanelO {

//This Method creates the panel that shows the interconnections of the
//experiment participants

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 105

D.dbgOut("$#Method CMIFControlDisplay.createCommunicationsPanelO");

}//end of createComnmiiicationsPanelO

//=
//=

private void createMessagePanelO {

//This Method creates the message panel at the lower right part of
//the window. It is used to display status messages and the like for
//the user.

D.dbgOut("$#Method CMIFControlDisplay.createMessagePanelO");

messagePanel.setLayout(new BorderLayoutO) ;
messagePanel.setBorder(BorderFactory.createEmptyBorder(8,8,8,8));

JPanel topPanel = new JPaneKnew BorderLayoutO);

JButton clearMessagesButton = new JButton ("Clear");

clearMessagesButton.setActionCommand("clear.messages");
clearMessagesButton.addActionListener((ActionListener)parentCCenter);

topPanel.add(new JLabel("Messages"), BorderLayout.WEST);
topPanel.add(clearMessagesButton,BorderLayout.EAST);

messageTextArea = new JTextAreaC") ;

messageTextArea.setEnabled(false);

messageTextArea.setDisabledTextColor(Color.black);

JScrollPane messageScrollPane =
new JScrollPane(messageTextArea,

JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,
JScrollPane.H0RIZ0NTAL_SCR0LLBAR_NEVER);

messagePanel.add(topPanel, BorderLayout.NORTH);
messagePanel.add(messageScrollPane, BorderLayout.CENTER);

}//end of createMessagePanelO

//=
//=

private void setComponentsSizesO {

//This method obtains the screen resolution and from there determines
//and sets the sizes for all major components.

D.dbgOut("$Method CMIFControlDisplay.setComponentsSizesO");

//
//main window

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 106

int idealHeight = 650;
int idealWidth = 980;

screenDimension = new Dimension(Toolkit.getDefaultToolkit()
getScreenSize());

D.dbgOut("$Size of screen: " + screenDimension.toStringO);

windowDimension = new Dimension (idealWidth,idealHeight);

if (idealHeight>screenDimension.height)
windowDimension.height=screenDimension.height;

if (idealWidth>screenDimension.width)
windowDimension.width=screenDimension.width;

setSize(windowDimension.width,windowDimension.height);

//
//divider locations

int mainDividerLocation = 210;
double rightDividerLocation = 0.6;
double leftDividerLocation = 0.55;

participantsSplitPane.setDividerLocation(180);

leftSplitPane.setDividerLocation(leftDividerLocation);
rightSplitPane.setDividerLocation(rightDividerLocation);
mainSplitPane.setDividerLocation(mainDividerLocation);

//
//other components

Dimension windowOuterDim = getSizeO;
Dimension windowInnerDim = new Dimension(window0uterDim.width-10,

windowOuterDim.height-30);

D.dbg0ut("$#Window inner size: " + windowInnerDim.toStringO);

int rightWidth = mainDividerLocation;
int leftWidth = windowInnerDim.width - mainDividerLocation;
int rightTopHeight= (new Float(windowInnerDim.height *

rightDividerLocation)).intValue();
int leftTopHeight=(new Float(windowInnerDim.height *

leftDividerLocation)).intValue();
int rightBottomHeight=(new Float(windowInnerDim.height *

(rightDividerLocation-1))).intValueO;
int leftBottomHeight=(new Float(windowInnerDim.height *

(leftDividerLocation-1))).intValueO;

messagePanel.setSize(new Dimension(rightWidth,
rightBottomHeight));

messageTextArea.setSize(new Dimension(rightWidth,
rightBottomHeight-15));

upperLeftPanel.setSize(new Dimension(leftWidth,
leftTopHeight));

phasesPanel.setSize(new Dimension(leftWidth,
leftBottomHeight));

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 107

topRightTabbedPane.setSize(new Dimension(rightWidth,
rightTopHeight));

pConfigPanel.setSize(new Dimension(rightWidth-5,
100));

pConfigPanel.setSize(new Dimension(rightWidth-5,
rightTopHeight-130));

plnnerPanel.setSize(new Dimension(rightWidth-10,
rightTopHeight-140));

listScrollPane.setSize(new Dimension(250,
80));

participantsSplitPane.setDividerLocation(HO);

setLocation((new Float(screenDimension.width / 2)).intValue()
-(new Float(windowDimension.width / 2)).intValueO,
(new Float(screenDimension.height / 2)).intValueO
-(new Float(windowDimension.height / 2)).intValueO);

validate();

}//end of setComponentsSizes

public void setPhaselcons(String whichOne, String newState) {

//This method allows to set the colored icons that display
//the states of the different experiment phases.
//The first parameter determines which phase icon will be changed,
//the second one determines the new state.

D.dbg0ut("$Method CMIFControlDisplay.setPhaselcons()");

JLabel tmpLabel =null;

if (whichOne.equals("config")) {
tmpLabel=conf igLabel;

> else if (whichOne.equals("rtisetup")) {
tmpLabel=rtiSetupLabel;

} else if (whichOne.equals("simulation")) {
tmpLabel=simulationLabel;

> else if (whichOne.equals("rticleanup")) {
tmpLabel=rtiCleanupLabel;

} else if (whichOne.equals("shutdown")) {
tmpLabel=shutdownLabel;

}

if (tmpLabel!=null) {

if (newState.equals("red")) {
tmpLabel.setlcon(redlcon);

} else if (newState.equals("red_pulse")) {
tmpLabel.setlcon(redlconPulse);

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 108

} else if (newState.equals("grn")) {
tmpLabel.setlcon(greenlcon);

} else if (newState.equals("grn_pulse")) {
tmpLabel.setlcon(greenlconPulse);

} else if (newState.equals("orange")) {
tmpLabel.setlcon(orangelcon);

y else if (newState.equals("orange_pulse")) {
tmpLabel.setlcon(orangelconPulse);

}//end of setPhaselcons

public String messageOut(String message) {

//This method takes a string argument and writes it to the message
//area. Different control sequences allow to display messages to
//the user in specific colors....as a warning for example.
//The message itself is then returned.

if (message.startsWith("7.")) {
//control sequence

if (message, equals ('"/.flush"))
messageTextArea.setTextC") ;

if (message, equals ('"/.red"))
messageTextArea.setDisabledTextColor(Color.red);

if (message. equals ('"/.black"))
messageTextArea.setDisabledTextColor(Color.black);

} else {
//normal message

messageTextArea.append("\n" + message);

}

return message;

}//end of messageOutO

//=
//=

public Point getCenterLocation(Dimension dialogSize) {

//This method helps to place a dialog window at the center
//of the main display window.
//The parameter is the size of the new dialog window and
//the return value is the new location for the upper left
//corner of this window to place it centered

Rectangle currentBounds = new Rectangle (this.getBounds());

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 109

Point newLocation = new Point();

newLocation.x = currentBounds.x +
(new Float (currentBounds.width / 2)).intValue()-
(new Float (dialogSize.width / 2)).intValueO;

newLocation.y = currentBounds.y +
(new Float (currentBounds.height / 2)).intValue()-
(new Float (dialogSize.height / 2)).intValue();

return newLocation;

} // end of getCenterLocation

public void switchToState (int newState) {

D.dbgOut("$Method CMIFControlDisplay.switchToState");

//This method coordinates that all buttons and input fields
//reflect the state of the control center and no false inputs
//can be made

switch (newState) {

case 0: //idle

break;

case 1: //SETUP.EXPERIMENT

startTimeTF.setEnabled(true);
endTimeTF.setEnabled(true);
intervalTF.setEnabled(true);
scaleTF.setEnabled(true);
masterTimeTF.setEnabled(true);

updateButton.setEnabled(true);
addButton.setEnabled(true);
modifyButton.setEnabled(true);
deleteButton.setEnabled(true);

break;

case 2: //SETUP.RTI
case 3: //RUN.EXPERIMENT
case 4: //CLEANUP.RTI

startTimeTF.setEnabled(false);
endTimeTF.setEnabled(false);
intervalTF.setEnabled(false);
scaleTF.setEnabled(false);
masterTimeTF.setEnabled(false);

updateButton.setEnabled(false);
addButton.setEnabled(false);
modifyButton.setEnabled(false);
deleteButton.setEnabled(false) ;

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 110

break;

case 5: //POST_EXPERIMENT:

break;

case 6: //READY_F0R_SHUTD0WN

break;

}//end of switch

}//end of switchToState

//=
//==

public void addParticipantControlPaneK JPanel controlPanel) {

//This method receives the handle to a controlPanel of a
//newly discovered experimentParticipant and puts it into place
//in the participants simulation panel, at the top position.

plnnerPanel.add(controlPanel, 0);
//plnnerPanel.add(Box.createHorizontalGlue());

plnnerPanel.revalidate();

}//end of addParticipantControlPanel

//==:=========

public void removeParticipantControlPanel(JPanel controlPanel) {

//This method receives the handle to a controlPanel of a
//newly discovered experimentParticipant and removes it from the
//participants simulation panel.
//...if the last remaining panel is removed, a note is
//placed in the same location

plnnerPanel.remove(controlPanel);

plnnerPanel.revalidateO;

}//end of removeParticipantControlPanel

>;//end of CMIFControlDisplay

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 111

D.1.3 The Class CMIFExperimentManager.java

// -/
//CMIF HLA Environment vl.OO, 7/2000 /
// /
//This is part of a Master's Thesis at the /
//Center for Multisource Information Fusion /
//SUNY at Buffalo /
// /
//All rights reserved: /
//packages CMIFControlCenter, CMIFExperimentParticipant ,/
// util : CMIF, Kai Harth /
//packages hla.rtil3.javal : U.S. DoD /
//packages Java, javax : Sun Microsystems /
// -/

package CMIF_HLA_Environment.CMIFControlCenter;

import CMIF_HLA_Environment.util.*;
import javax.swing.JOptionPane;
import javax.swing.JFrame;

import j ava.awt.event.*;
import j ava.awt.*;
import Java.util.Vector;

import javax.swing.*;

//=
//=

public class CMIFExperimentManager
implements ActionListener

//The class CMIFExperimentManager provides the control center
//with the functionality to
//-configure an experiment prior to the setup and usage
// of the RTI services
//-save experiment configurations
//-open existing experiment configurations

//instance variables

public CMIFControlCenter parentCCenter;

public DebugHelper D = new DebugHelperO ;

//experiment parameters;

public String experimentNameString = new StringC'UNTITLED");
public String experimentDescriptionString = new String("n/a");
public String experimentAuthorString =

new String(System.getProperty("user.name"));
public String startTimeString = new StringC'0.0");
public String endTimeString = new String("100.0");
public String intervalTimeString = new StringC'1.0");

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 112

public String scaleString = new StringO'1.0");

public double startTimeDouble =0.0;
public double endTimeDouble = 100.0;
public double intervalTimeDouble =1.0;
public double scaleDouble = 1.0;

public Vector participantsToJoinVector = new VectorO;
public Vector channelsToEstablishVector = new VectorO;

boolean timeManagementConfigured = false;
boolean participantsConfigured = false;
boolean commuicationsConfigured = false;

JDialog experimentlnfoDialog;
public JTextField experimentNameTF, experimentAuthorTF;
public JTextArea experimentlnfoTA;

public JList participantsConfigList = new JList(participantsToJoinVector);

public CMIFExperimentManager (CMIFControlCenter parent) {

//Constructor to create an instance of CMIFExperimentManager.
//The control center is made accessible by keeping a handle
//(parentCenter) to it.
//Then the experiment manager does nothing until attempts are made
//to open a new or existing experiment.

parentCCenter = parent;

D.dbgOut("Started CMIFExperimentManager ");
D.setDebugState(DebugHelper.FULL_DEBUG);

createExperimentlnfoDialogO;

}//end of constructor

private void createExperimentlnfoDialogO {

//The dialog window that might later be needed to ask the user
//for name and info for an experiment is created beforehand
//in this method

experimentlnfoDialog = new JDialog(parentCCenter.CCDisplay,
"Enter Experiment Info", true);

experimentlnfoDialog.getContentPaneO . setLayout(new BorderLayoutO) ;

//
//upper part:

JPanel upperPanel = new JPaneKnew GridLayout(2,l));
JPanel upperPanell = new JPanel(new FlowLayout(FlowLayout.LEFT));

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 113

JPanel upperPanel2 = new JPanel(new FlowLayout(FlowLayout.LEFT));

experimentNameTF = new JTextField(20);
experimentAuthorTF = new JTextField(20);
experimentAuthorTF.setText(experimentAuthorString);

upperPanell.add(new JLabeK"Experiment Name: "));
upperPanell.add(experimentNameTF);

upperPanel2.add(new JLabeK"Experiment Author:"));
upperPanel2.add(experimentAuthorTF);

upperPanel.add(upperPanell);
upperPanel.add(upperPanel2);

//
//center part:

JPanel centerPanel = new JPanel (new BorderLayoutO);

centerPanel.setBorder(BorderFactory.createEmptyBorder(10,10,10,10));

experimentlnfoTA = new JTextArea(10,25);

centerPanel.add(experimentlnfoTA, BorderLayout.CENTER);

centerPanel.add(new JLabel("Enter additional info "), BorderLayout.NORTH);

//
//bottom part:

JPanel bottomPanel = new JPanel(new FlowLayout(FlowLayout.CENTER));

JButton okButton = new JButton("0k");
okButton.addActionListener(this);
okButton.setActionCommandC'info_ok");

JButton cancelButton = new JButton("Cancel");
cancelButton.addActionListener(this);
cancelButton.setActionCommand("info_cancel");

bottomPanel.add(okButton);
bottomPanel.add(cancelButton);

experimentlnfoDialog.getContentPane().add(upperPanel.BorderLayout.NORTH);
experimentInfoDialog.getContentPane().add(centerPanel.BorderLayout.CENTER);
experimentInfoDialog.getContentPane().add(bottomPanel,BorderLayout.SOUTH);

experimentlnfoDialog.packO;

}//end of createExperimentlnfoDialog

//===
//==================== ==============================

public void displayAboutTextO {

//This method opens a dialog window and displays
//the information stored in the experimentDescriptionString

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 114

D.dbgOut("$#Method: CMIFExperimentManager.displayAboutText()");

String tmpString = new StringO;

if (experimentDescriptionString.equals("n/a")) {
tmpString="No additional information available...";

} else {
tmpString = experimentDescriptionString;

JOptionPane.showMessageDialog((JFrame)parentCCenter.CCDisplay ,
tmpString , experimentNameString,
JOptionPane.INFORMATION.MESSAGE);

}//end of displayAboutTextO

public void configureNewExperiment() {

//This method initiates the setup of a new experiment
//configuration.
//First a dialog is brought up that asks the user for
//experiment name and description

D.dbgOut("$#Method: CMIFExperimentManager. configureNewExperiment()");

if (parentCCenter.cCenterState == parentCCenter.IDLE II
parentCCenter.cCenterState == parentCCenter.READY_FOR_SHUTDOWN) {

parentCCenter.cCenterState= parentCCenter.SETUP_EXPERIMENT;
parentCCenter.CCDisplay.setPhaselcons("config","grn_pulse");

experimentInfoDialog.
setLocation(parentCCenter.CCDisplay.

getCenterLocation(experimentlnfoDialog.getSizeO)) ;

experimentlnfoTA.setTextC");
experimentNameTF.setText("");

experimentInfoDialog.show();

y else {

parentCCenter.CCDisplay.
messageOutO'The current state of the control center does not");

parentCCenter.CCDisplay.
messageOut("allow to open a new experiment!");

parentCCenter.CCDisplay.
messageOut("Please finish and close the current experiment first.");

}

}//end of configureNewExperiment

//
// __

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 115

public void evaluateTimePanellnputsO {

//After pressing the "update" Button on the time management panel
//this method reads the strings from the text fields and checks for
//valid inputs.

D.dbgOut("$#Method: CMIFExperimentManager.evaluateTimePanellnputs()");

boolean allOk = true;

allOk = allOk &
convertTimeStrings("start", parentCCenter.CCDisplay.startTimeTF.getText());

allOk = allOk &
convertTimeStrings("end", parentCCenter.CCDisplay.endTimeTF.getText());

allOk = allOk &
convertTimeStrings("interval", parentCCenter.CCDisplay.

intervalTF.getText());

allOk = allOk &
convertTimeStrings("scale", parentCCenter.CCDisplay.scaleTF.getText());

t imeManagementConf igured=true;

parentCCenter.CCDisplay.messageOut("");
parentCCenter.

CCDisplay.messageOut("Successfully updated the timing parameters.");

if (lallOk) {
parentCCenter.CCDisplay.messageOut("7,red") ;
parentCCenter.CCDisplay.messageOut("");
parentCCenter.CCDi splay.
messageOut("Some of the entries were not valid...please try again!");

parentCCenter.CCDisplay.messageOut("%black");
t imeManagementConf igured=false;

}

}//end of evaluateTimePanellnputs

//
//

private boolean convertTimeStrings(String whichOne, String stringTime) {

//This method attempts to convert the string inputs made for time management
//(either from file or from the text boxes) to the neccessare double values.
//It returns (true/false) if the attempt was successful...

D.dbgOut("$#Method: CMIFExperimentManager.convertTimeStrings("
+whichOne+", " + stringTime +")");

boolean conversionSuccessful = false;
double tmpDouble=0.0;

try {

tmpDouble = (new Double(stringTime)).doubleValueO;

D.dbgOut("$#converted to: " + tmpDouble);

conversionSuccessful=true;

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 116

if (whichOne.equals("start")){
if (tmpDouble>=0) {
startTimeDouble = tmpDouble;
startTimeString= (new Double(startTimeDouble)).toStringO;
parentCCenter.CCDisplay.startTimeTF.setText(startTimeString);

} else {
conversionSuccessful=false;
parentCCenter.CCDisplay.startTimeTF.setText("");

}
}

if (whichOne.equals("end")){
if (startTimeDouble<tmpDouble) {
endTimeDouble = tmpDouble;
endTimeString= (new Double(endTimeDouble)).toStringO;
parentCCenter.CCDisplay.endTimeTF.setText(endTimeString);

} else {
conversionSuccessful=false;
parentCCenter.CCDisplay.endTimeTF.setText("");

}

if (whichOne.equals("interval")) {
if (tmpDouble<(endTimeDouble-startTimeDouble)/2) {
intervalTimeDouble = tmpDouble;
intervalTimeString= (new Double(intervalTimeDouble)).toStringO;
parentCCenter.CCDisplay.intervalTF.setText(intervalTimeString);

} else {
conversionSuccessful=false;
parentCCenter.CCDisplay.intervalTF.setText("");

}
}

if (whichOne.equals("scale") M
if (tmpDouble>0) {
scaleDouble = tmpDouble;
scaleString= (new Double(scaleDouble)).toStringO;
parentCCenter.CCDisplay.scaleTF.setText(scaleString);

} else{
conversionSuccessful=false;
parentCCenter.CCDisplay.scaleTF.setText("");

}

} catch (Exception e){

D.dbgOut("Error in convertTimeStrings: " + e.toStringO);
conversionSuccessful=false;
if (whichOne.equals("start")) {
parentCCenter.CCDisplay.startTimeTF.setText("");

} else if (whichOne.equals("end")) {
parentCCenter.CCDisplay.endTimeTF.setText("");

} else if (whichOne.equals("scale")) {
parentCCenter.CCDisplay.scaleTF.setText("");

} else if (whichOne.equals("interval")){
parentCCenter.CCDisplay.intervalTF.setText("");

}

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 117

}

return conversionSuccessful;

}//end of convertTimeStrings

II-
II-
public boolean configCompleteO {

//This method allows other program parts to check on the
//status of the experiment configuration.
//It returns true only if all of the following are defined;
//time management, participants to contact, communications.

D.dbgOut("$#Method: CMIFExperimentManager.configCompleteO");

boolean result = false;

participantsConfigured = participantsToJoinVector.size()>0;

//for the time being:
commuicationsConfigured = true;

if ((timeManagementConfigured fc& participantsConfigured) &&
commuicationsConfigured)

result = true;

return result;
//return true;

}//end of configComplete

II-
II-
public void editParticipantsToJoinList(String operationString) {

//This method processes attempts to change the content of the
//lists of experiment participants in the participants panel.
//The parameter operationString contains on of "add", "modify"
//and "delete" and determines what should be done.
//All this can only be processed durin the configuration phase...

D.dbgOut("Method ExperimentManager.editParticipantsToJoinList" +
"(String operationString)");

if (parentCCenter.cCenterState == parentCCenter.SETUP_EXPERIMENT) {

if (operationString.equals("add")) {

String message = new StringC'Add a new experiment participant");

String newParticipantString =
JOptionPane.showInputDialog(parentCCenter.CCDisplay,

message,
"Participants List",
JOptionPane.QUESTION_MESSAGE);

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 118

if ÜparticipantsToJoinVector.contains(newParticipantString)) {

participantsToJoinVector.add(newParticipantString);
participantsConfigList.setListData(participantsToJoinVector);

participantsConfigList.validate();

} else {

parentCCenter.CCDisplay.messageOutC1");
parentCCenter.

CCDisplay.messageOut("Participants with identical names" +
" are not allowed.");

}

} else if (operationString.equals("modify")) {

if (participantsConfigList.getSelectedlndexO!=-l) {

String message = new String("Modify this experiment participant");

String selectedParticipantString = (String)participantsConfigList.
getSelectedValueO;

String newParticipantString =
(String)JOptionPane.showInputDialog(parentCCenter.CCDisplay,

message,
"Participants List",
JOptionPane.QUESTION.MESSAGE,
null,
null,
selectedParticipantString);

if (!participantsToJoinVector.contains(newParticipantString)) {

participantsToJoinVector.add(newParticipantString);
participantsToJoinVector.remove(selectedParticipantString);

participantsConfigList.setListData(participantsToJoinVector);

participantsConfigList.validateO;

} else {

parentCCenter.CCDisplay.messageOut("");
parentCCenter.
CCDisplay.messageOut("Participants with identical names" +

" are not allowed. No changes made...");

}

>

} else if (operationString.equals("delete")) {

if (participantsConfigList.getSelectedlndexO!=-l) {

String selectedParticipantString = (String)participantsConfigList.
getSelectedValueO;

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 119

participantsToJoinVector.remove(selectedParticipantString);
participantsConfigList.setListData(participantsToJoinVector);

participantsConfigList.validate();

}

}

y eise {

parentCCenter.CCDisplay.messageOut("");
parentCCenter.

CCDisplay.messageOut("The current phase does not allow to change" +
" the contents of this list.");

}

}//end of editParticipantsToJoinList

//
//

// Listener

//

public void actionPerformed(ActionEvent event) {

String command = event.getActionCommandO;

D.dbgOut("ExperimentManager.actionPerformed() received: " + command);

if (command.equals("info_ok")){

experimentNameString = experimentNameTF.getText();
experimentAuthorString = experimentAuthorTF.getText();
experimentDescriptionString = experimentInfoTA.getText();

parentCCenter.CCDisplay.infoLabel.setText(experimentNameString);

experimentlnfoDialog.setVisible(false);

}

//

if (command.equals("info_cancel")){

experimentlnfoDialog.setVisible(false);

}

//

if (command.equals("update_time„management")){

if (parentCCenter.cCenterState==parentCCenter.SETUP.EXPERIMENT)
evaluateTimePanellnputsO;

}

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 120

II-

if (command.equals("add_participant"))
editParticipantsToJoinList("add");

if (command.equals("modify_participant"))
editParticipantsToJoinList("modify");

if (command.equals("delete_participant"))
editParticipantsToJoinList("delete");

}//end of actionPerformed

};//end of class CMIFExperimentManager

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 121

D.I.4 The Class RTIControlModule.java

// /
//CMIF.HLA Environment vl.OO, 7/2000 /

// ', //This is part of a Master's Thesis at the /
//Center for Multisource Information Fusion /
//SUM at Buffalo /
// /
//All rights reserved: /
//packages CMIFControlCenter, CMIFExperimentParticipant,/
// util
//packages hla.rtil3.javal
//packages Java, javax

CMIF, Kai Harth /
U.S. DoD /
Sun Microsystems /

// /

package CMIF_HLA_Environment.CMIFControlCenter;

import CMIF_HLA_Environment.util.*;
import CMIF_HLA_Environment.CMIFExperimentParticipant.*;

import hla.rtil3.javal.*;

import java.awt.event.*;
import java.util.Date;
import java.util.Hashtable;
import java.util.Enumeration;
import j ava.util.StringTokenizer;

public class RTIControlModule
implements ActionListener

//The class RTIControlModule represents the HLA object of the same name.
//It sets up and manages all RTI related functionality for the
//CMIF Control Center.

//static variables:

public static int RTI_D0WN=1;
public static int RTI_SETUP=2;
public static int RTI_RUNNING=3;
public static int RTI_SHUTD0WN=4;
public static int RTI_C0RRUPTED=5;

public static int SIM_IDLE=6;
public static int SIM_READY=7;
public static int SIM_RUNNING=8;
public static int SIM_D0NE=9;
public static int SIM_C0RRUPTED=9;
public static int SIM_AB0RTED=10;

//handles

static int hRTIControlModule, hExperimentState, hExperimentParticipant,
hParticipantName, hParticipantState, hControlInteraction,

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 122

hControlMessageContent, hControlMessageRecipient, hMessageToBus,
hToBusMessageContent, hToBusSender, hToBusRecipient, hMessageFromBus,
hFromBusMessageContent, hFromBusSender, hFromBusRecipient, hStatusMessage,
hStatusMessageContent, hStatusMessageSender;

/* keep a reference to the RTIambassador for use from within TestNode
methods */

protected static RTIambassador sRtiAmb;

//instance variables:

//the timing values are set after those in the
//experiment manager ...only for convenience

public double startTimeDouble =0.0;
public double endTimeDouble = 100.0;
public double intervalTimeDouble = 1.0;
public double scaleDouble = 1.0;

DebugHelper D = new DebugHelper ();

CMIFControlCenter parentCCenter;

public RTIambassador rtiamb;

RTIControlModuleFedamb fedamb;

String fedname = "RTIControlModule";

int instancelD;

public int rtiState = RTI.D0WN;

public int simState = SIM_IDLE;

public boolean issueUpdates = false;
public boolean runTickThread = true;
public boolean shutdownlnitiated = false;

public Hashtable remoteParticipantsTable = new Hashtable(33);

//
//
/******************* Static Methods **********************************/

public static void initialize(RTIambassador rtiamb) throws RTIexception {

//This method initializes all object and attribute handles with the rtiAmb
//...necessary to start or join a federation execution

// hold onto a reference to our RTI ambassador

sRtiAmb = rtiamb;

// obtain RTI handles to the FED entities used in the federation

hRTIControlModule = rtiamb.getObjectClassHandle("RTIControlModule");
hExperimentState = rtiamb.getAttributeHandle("ExperimentState",

hRTIControlModule);

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 123

hExperimentParticipant =
rtiamb.getObjectClassHandleC'CMIFExperimentParticipant");

hParticipantName = rtiamb.getAttributeHandle("ParticipantName",
hExperimentParticipant);

hParticipantState = rtiamb.getAttributeHandle("ParticipantState",
hExperimentParticipant);

hControlInteraction = rtiamb.getInteractionClassHandle("ControlInteraction");
hControlMessageContent =

rtiamb.getParameterHandleO'ControlMessageContent", hControlInteraction);
hControlMessageRecipient =

rtiamb.getParameterHandleC'ControlMessageRecipient", hControlInteraction);

hMessageToBus= rtiamb.getInteractionClassHandle("MessageToBus");
hToBusMessageContent=

rtiamb.getParameterHandle("ToBusMessageContent",hMessageToBus);
hToBusSender=

rtiamb.getParameterHandle("ToBusSender",hMessageToBus);
hToBusRecipient=

rtiamb.getParameterHandle("ToBusRecipient",hMessageToBus);

hMessageFromBus= rtiamb.getInteractionClassHandle("MessageFromBus");
hFromBusMessageContent=

rtiamb.getParameterHandleC'FromBusMessageContent",hMessageFromBus);
hFromBusSender=

rtiamb.getParameterHandle("FromBusSender"jhMessageFromBus);
hFromBusRec ip i ent=

rtiamb.getParameterHandle("FromBusRecipient",hMessageFromBus) ;

hStatusMessage= rtiamb.getInteractionClassHandle("StatusMessage");
hStatusMessageContent=

rtiamb.getParameterHandleC'StatusMessageContent".hStatusMessage);
hStatusMessageSender=

rtiamb.getParameterHandleC'StatusMessageSender".hStatusMessage) ;

}//end of initialize

//-
II-
public static void publishAndSubscribeO throws RTIexception {

//PUBLISHING:
//create an outgoing attribute-handle set

AttributeHandleSet ahsetOut = AttributeHandleSetFactory.create(l);

// populate the set with the attributes we publish/subscribe
ahsetOut.add(hExperimentState);

// perform the appropriate DM calls
sRtiAmb.publishObjectClass(hRTIControlModule, ahsetOut);

sRtiAmb.publishlnteractionClass(hControlInteraction);
sRtiAmb.publishlnteractionClass(hMessageFromBus);

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 124

//SUBSCRIBING:
//create an attribute-handle set for experiment participant

AttributeHandleSet ahsetln = AttributeHandleSetFactory.create(2);

ahsetln.add(hParticipantName);
ahsetln.add(hParticipantState);

// perform the appropriate DM calls

sRtiAmb.subscribeObjectClassAttributes(hExperimentParticipant, ahsetln);

sRtiAmb.subscribelnteractionClass(hMessageToBus);
sRtiAmb.subscribelnteractionClass(hStatusMessage);

}//end of publishAndSubscribe

II-
II-

public void receiveStatusMessage(ReceivedInteraction phvpset,
String tag) {

//This method is called when the Federate Ambassador receives
//any status message.
//Then the content has to be processed.

D.dbgOut(fedname + " received StatusMessage, " + tag);

try {

//code to react to status message (e.g. log it or display it
//will go here in next program version

} catch (Exception e){

D.dbgOut("Exception in RTIControlModule."+
"receiveStatusMessage:");

D.dbgOut("#" + e.toStringO);

}//end of receiveStatusMessage

//=
//=

public void receiveMessageToBus(ReceivedInteraction phvpset,
String tag) {

//This method is called when the Federate Ambassador receives
//any message from bus.
//Then it has to be evaluated, which recipient the message is intended for
//and the content has to be processed.

D.dbgOut(fedname + " received MessageToBus, " + tag);

try {

String messageSender =

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 125

EncodingHelpers.decodeString(phvpset.getValue(2));

String messageRecipient =
EncodingHelpers.decodeString(phvpset.getValue(1));

String message =
EncodingHelpers.decodeString(phvpset.getValue(0));

D.dbg0ut("$# message: " + message + " for " + messageRecipient);

if (messageRecipient.equalsC'all")) {

Enumeration remoteParticipantsEnum = remoteParticipantsTable.elements();

while (remoteParticipantsEnum.hasMoreElements()){

CMIFExperimentParticipant tmpParticipant =
(CMIFExperimentParticipant)remoteParticipantsEnum.nextElementO;

if (sendingIsAllowed(messageSender, tmpParticipant.participantName)){

sendMessageToBus(messageSender,
tmpParticipant.participantName,
message);

}

}

} else {

if (sendinglsAllowed(messageSender, messageRecipient)){

sendMessageToBus(messageSender, messageRecipient, message);

}

}

//Other things to do with an incoming bus message
//will go here in a future program version...

//logMessageO ;
//evaluateDataVolumeO;

} catch (Exception e){

D.dbgOutO'Exception in RTIControlModule."+
"receiveMessageToBus:") ;

D.dbg0ut("#" + e.toStringO);

}//end of receiveMessageToBus

//=
//=

public boolean sending!sAllowed(String sender, String recipient) {

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 126

//This method evaluates the communication matrix (later to be implemented)
//and returns true if "sender" is currently allowed to send to
//"recipient"

return (!sender.equals(recipient));

}//end of sendinglsAllowed

II-
II-

public void sendControlInteraction(String recipient,
String message) {

//This method is used to send a control interaction,
//represented by the string 'message' to the recipient.
//If 'all' is used as recipient, all participants
//will accept the message.

try {

D.dbgOut("Sending Controllnteraction...");
D.dbgOut("#Recipient: " + recipient + ", Content: " +message);

// create the outgoing parameters set
SuppliedParameters phvpset = SuppliedParametersFactory.create(2);

// add the bytes to the parameter set
phvpset.add(hControlMessageRecipient,

EncodingHelpers.encodeString(recipient));
phvpset.add(hControlMessageContent,

EncodingHelpers.encodeString(message));

// send the interaction on its way
sRtiAmb.sendInteraction(hControlInteraction, phvpset, "Java");

} catch (Exception e) {

D.dbgOut("Exception in RTIControlModule."+
"sendControlInteraction:");

D.dbgOut("#" + e.toStringO);

}

}//end of sendControlInteraction

II-
II-
public void sendMessageToBus(String sender,

String recipient,
String message) {

//This method is used to forward any message, coming from a
//participant, back to the bus

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 127

//and to the recipient.

try {

D.dbgOut("Sending MessageToBus...");
D.dbgOut("#Sender:" + sender + ", Recipient: " + recipient

+ ", Content: " +message);

// create the outgoing parameters set
SuppliedParameters phvpset = SuppliedParametersFactory.create(3);

// add the bytes to the parameter set
phvpset.add(hFromBusSender,

EncodingHelpers.encodeString(sender));
phvpset.add(hFromBusRecipient,

EncodingHelpers.encodeString(recipient));
phvpset.add(hFromBusMessageContent,

EncodingHelpers.encodeString(message));

// send the interaction on its way
sRtiAmb.sendInteraction(hMessageFromBus, phvpset, "Java");

} catch (Exception e) {

D.dbgOut("Exception in RTIControlModule."+
"sendMessageToBus:");

D.dbgOut("#" + e.toStringO);

}

}//end of sendMessageToBus

//Per instance methods

public RTIControlModule (CMIFControlCenter parent) {

//Constructor for the class RTIControlModule
//Parameter is the handle to the Controlcenter....from
//there, all other parts of the program are accessible.

D.dbgOut("Started RTIControlModule ");
D.setDebugState(DebugHelper.FULL_DEBUG);

parentCCenter = parent;

runBackgroundTickThreadO;

}//end of contructor

//=
//=

public void launchRTK) {

//This method kicks off the RTI execution

rtiState=RTI_SETUP;

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 128

D.dbgOut("Method: RTIControlModule.launchRTlO ");

fedamb = new RTIControlModuleFedamb(this);

try {

// construct the RTI ambassador
rtiamb = new RTIambassadorO;

try {
// attempt to create the federation executive
rtiamb.createFederationExecution("CMIF HLA Environment",

"CMIF_HLA_Environment.fed");
D.dbgOut(fedname + ": created federation execution");

rtiState=RTI_RUMING;

} catch (FederationExecutionAlreadyExists ex) {
D.dbgOut(fedname + ": federation execution already exists");
// this exception is okay, so fall through

}

/* The "fedex" sets itself up asynchronously with respect to the
return of the "createFederationExecution" call, so join attempts
occuring quickly afterwards will fail. If this happens, we'll keep
looping and trying.

*/

int tries = 30;
while (tries > 0) {

try {
rtiamb.joinFederationExecution(fedname,

"CMIF_HLA_Environment",
fedamb);

break;
}
catch (FederationExecutionDoesNotExist ex) {.
D.dbgOut(fedname + ": federation does not exist");

// decrement the number of remaining tries and
//tick to kill some time

tries—;
rtiamb.tick(0.4, 0.5);

}

/* If we still haven't joined, try once more and let the exception
propagate. */

if (tries == 0)
rtiamb.joinFederationExecution(fedname,

"CMIF_HLA_Environment",
fedamb);

D.dbgOut(fedname + ": joined federation execution");

rtiState=RTI_RUNNING;

} catch (RTIexception ex) {

/* catch exceptions that result from creating the RTI ambassador,

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 129

creating the federation executive, or joining the federation
execution */

D.dbgOut(fedname + ": caught exception " + ex);

rtiState=RTI_CORRUPTED;

parentCCenter.CCDisplay.messageOut("");
parentCCenter.

CCDisplay.messageOut("An Error occured...the RTI could not "+
"be launched!");

return;
}

try {

initialize(rtiamb);
D.dbgOutCfedname + ": established RTK->SIM handle mapping");

publishAndSubscribeO;
D.dbgOutCfedname + ": initialized DM disposition");

instancelD = sRtiAmb.registerObjectlnstance(hRTlControlModule);

// enable time-constraint

rtiamb.enableTimeConstrainedO;

/* our federate ambassador will set a boolean variable to "true" when
it receives notification that constraint has been enabled; we'll
loop and tick until this happens

*/

while (ffedamb.mConstraintEnabled) {
rtiamb.tick(0.01, 0.2);

}
D.dbgOutCfedname + ": time constraint enabled @ " +

fedamb.mCurrentTime);

// enble time regulation at the current time and lookahead
rtiamb.enableTimeRegulation(EncodingHelpers.encodeDouble

(fedamb.mCurrentTime),
rt iamb.queryLookahead());

/* loop until the federate ambassador indicates that regulation has been
enabled */

while (Ifedamb.mRegulationEnabled) {
rtiamb.tick(0.01, 0.2);

}

D.dbg0ut(fedname + ": time regulation enabled @ "+
fedamb.mCurrentTime);

// enable asynchronous delivery of receive-ordered events

rtiamb.enableAsynchronousDelivery();
D.dbgOut(fedname + ": asynchronous delivery enabled");

rtiamb.tick();

} catch CException e) {

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 130

D.dbgOut("Exception occured in runPreSimulation: " + e.getMessageO);

}

}//end of launchRTI

//===

public void runPreSimulationO {

//This method kicks off initialization of the HLA representation of the
//RTIControlModule, object publication and subscription and then tries
//to contact the experiment participants

D.dbgOut("$Method: RTIControlModule.runPreSimuationO");

try {

while(!issueUpdates)
rtiamb.tick(0.2, 0.4);

updateAttributeValues(fedamb.mCurrentTime);

//wait for all participants to be located

while(!allParticipantsLocated()) {

rtiamb.tickO ;
if (rtiState==RTI_SHUTDOWN){
shutDownRTIinOwnThreadO;
break;}

>

D.dbgOut("RTIControlModule has located all expected participants!");
D.dbg0ut("#...now set them up for the experiment....");

//send them the timing info

sendOutTiminglnfoO ;

//wait for them to be ready for the simulation

while(lallParticipantsReadyForSimulationO) {

rtiamb.tickO;
if (rtiState==RTI_SHUTDOWN){
ShutDownRTIinOwnThreadO;
break;}

D.dbgOutC'All Participants report ready for simulation!");

s imSt at e=SIM_READY;

} catch (Exception e) {

D.dbgOutO'Exception in RTIControlModule.runPreSimulationO "+
e.getMessage());

}

1

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 131

}//end of runPreSimulation

public void runSimulationO {

//This method kicks of the actual simulation run
//First, a control message is sent out to the
//participants, then the master time is provided.

D.dbgOut("$Method: RTIControlModule.startSimuationO");

simState=SIM_RUNNING;

sendControlInteractionC'all", "start_simulation");

final SwingWorker worker = new SwingWorkerO {
public Object construct() {

//background code goes here

D.dbgOutO'RTIControlModule Starting Simulation thread!");

try {

//
//set fedamb time to desired simulation start time

fedamb.mTimeAdvanceGrant=false;

rtiamb.timeAdvanceRequest(EncodingHelpers.encodeDouble
(startTimeDouble));

// loop and tick until we receive the time advance

while (!fedamb.mTimeAdvanceGrant) {
rtiamb.tick(0.01, 0.3);

}
D.dbgOut("$'/, RTIControlModule: Set fedamb to start time");

updateSimTime(fedamb.mCurrentTime);

//
//get current system time

long startTime = (new DateO) .getTimeO ;

long currentTime;

int iterations = 1;

parentCCenter.CCDisplay.messageOut("");
parentCCenter.CCDisplay.messageOut("Simulation is running...");

while (simState==SIM_RUNNING) {

currentTime = (new DateO) .getTimeO ;

while (currentTime<= startTime +
(new Double(iterations *

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 132

intervalTimeDouble*1000/scaleDouble)).intValue()){

currentTime = (new DateO) .getTimeO ;

}

double newFedambTime =
startTimeDouble+(iterations*intervalTimeDouble);

fedamb.mTimeAdvanceGrant=false;

rtiamb.timeAdvanceRequest(EncodingHelpers.encodeDouble
(newFedambTime));

// loop and tick until we receive the time advance

while (!fedamb.mTimeAdvanceGrant) {
rtiamb.tick(0.01, 0.3);

D.dbg0ut("$7, RTIControlModule: Set fedamb to time "
+fedamb.mCurrentTime);

updateSimTime(fedamb.mCurrentTime);

if (fedamb.mCurrentTime>=endTimeDouble){

simState=SIM_DONE;
D.dbgOut("$'/. RTIControlModule:Simulation is done");

}
iterations++;

}//end of while

parentCCenter.CCDisplay.messageOutC") ;
parentCCenter.CCDisplay.messageOutC'Simulation is completed...");

parentCCenter.CCDisplay.setPhaselconsC'simulation", "red");
parentCCenter.CCDisplay.setPhaseIcons("rticleanup", "orange");

} catch (Exception e) {

D.dbgOut("RTIControlModule: Exception in Simulation thread!");
D.dbgOutC"/. " + e.toStringO);

simState=SIM_CORRUPTED;

}

D.dbgOut("RTIControlModule: Stopped Simulation thread!");
return null;

}
};

worker.start();

37/end of runSimulation

//ZZZZZ~Z~ZZZ~ZZZZZZZZZZZZZZZZZZZ~ZZZZZZZZZ~ZZZZZZ

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 133

private void updateSimTime(double simTime) {

//this method adjusts the time display in the main window to
//the current simulation time

parentCCenter.CCDisplay.masterTimeTF.
setText((new Double(simTime)).toStringO);

parentCCenter.CCDisplay.masterTimeTF.revalidate();

}//end of updateSimTime

//===
//===================================== ============

public void abortSimulationO {

//This method interrupts the simulation run....
//First, a control message is sent out to the
//participants, then the simulation thread is stopped
//by changing the simState.

D.dbgOut("$Method: RTIControlModule.abortSimuationO");

simState=SIM_ABORTED;

sendControlInteractionC'all", "abort_simulation");

}//end of abortSimulation

//===
//===

private void sendOutTiminglnfoO {

//This method encodes the timing settings of the experiment
//(start, end, scale, interval) into a string and sends it to all
//participants via a controllnteraction

StringBuffer timinglnfoStringBuffer =
new StringBuffer("timing#");

timinglnfoStringBuffer.append("start#");
timinglnfoStringBuffer.

append(parentCCenter.CCManager.startTimeString);
timinglnfoStringBuffer.append("#end#");
timinglnfoStringBuffer.

append(parentCCenter.CCManager.endTimeString);
timinglnfoStringBuffer.append("#interval#");
timinglnfoStringBuffer.

append(parentCCenter.CCManager.intervalTimeString);
timinglnfoStringBuffer.append("#scale#");
timinglnfoStringBuffer.

append(parentCCenter.CCManager.scaleString);

sendControlInteractionC'all", timinglnfoStringBuffer.toStringO);

//also the timing values are synchronized with those in the experimentmanager
//...just for convenience of shorter variable calls

startTimeDouble =parentCCenter.CCManager.startTimeDouble;

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 134

endTimeDouble = parentCCenter.CCManager.endTimeDouble;
intervalTimeDouble = parentCCenter.CCManager.intervalTimeDouble;
scaleDouble = parentCCenter.CCManager.scaleDouble;

}//end of sendOutTiminglnfo

//===
//===

private boolean allParticipantsReadyForSimulationO {

//This method returns false until all located participants
//have reported ready for simulation

boolean allReady = true;

Enumeration remoteParticipantsEnum = remoteParticipantsTable.elements();

while (remoteParticipantsEnum.hasMoreElements()){

CMIFExperimentParticipant tmpParticipant =
(CMIFExperimentParticipant)remoteParticipantsEnum.nextElementO;

D.dbgOut("$# State " + tmpParticipant.participantState);

allReady = allReady && tmpParticipant.participantState==37;

}

return allReady;

}//end of allParticipantsReadyForSimulation

//===
//===

private boolean allParticipantsLocatedO {

//This method compares the names of the participants
//in the remoteParticipantsTable with those listed in
//participantsToJoinVector

//D.dbgOut("Method: RTIControlModule.allParticipantsLocated");

boolean allLocated = false;

int alreadyFound =0;

Enumeration remoteParticipantsEnum = remoteParticipantsTable.elements();

while (remoteParticipantsEnum.hasMoreElements()){

CMIFExperimentParticipant tmpParticipant =
(CMIFExperimentParticipant)remoteParticipantsEnum.nextElement();

if (parentCCenter.CCManager.
participantsToJoinVector.
contains((String)tmpParticipant.participantName)) {

alreadyFound++;
//D.dbg0ut("$# located: " + tmpParticipant.participantName);

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 135

if (alreadyFound==parentCCenter.CCManager.
participantsToJoinVector.size())

allLocated = true;

D.dbgOut("$#Remote participants: " +
remoteParticipantsTable.sizeO + ", allLocated: " +allLocated);

return allLocated;

}//end of allParticipantsLocated

II-
II-
public void reflectAttributeValues(int oid,

ReflectedAttributes ahvpset,
String theTag) throws ObjectNotKnown,
AttributeNotKnown,
FederatelnternalError {

//This method is triggered from the Fedamb and reacts to a callback
//due to a change of attributes in one of the object classes that we
//are registered for.
//In particular, the local instance representing this object has
//to be retrieved an its corresponding attributes have to be changed.

D.dbgOut("Method: RTIControlModuleFedamb.reflectAttributeValuesO");

// look up the object ID in our remote instance hash table

CMIFExperimentParticipant tmplnstance =
(CMIFExperimentParticipant)remoteParticipantsTable.
get(new Integer(oid));

/* if "get" returns null, the ID was not found, so throw an
exception

*/

if (tmplnstance == null)
throw new ObjectNotKnownC'Object not found " + oid);

tmplnstance.reflectAttributeValues(ahvpset);

}//end of reflectAttributeValues

private void updateAttributeValues(double theTime) {

//This method packs the information about the controlCenter
//(currently only the experimentState) into an AttributeHandleSet
//and publishes it.

if (issueUpdates) {

try {

// create a set for the outgoing attributes

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 136

SuppliedAttributes ahvpset = SuppliedAttributesFactory.create(l);

ahvpset.add(hExperimentState,
EncodingHelpers.encodeInt(simState + rtiState*10));

// send the update on its way
sRtiAmb.updateAttributeValues(instaiiceID,

ahvpset,
//EncodingHelpers.encodeDouble(theTime),
"Java");

} catch (Exception e) {

D.dbgOut("Exception in RTIControlModule.updateAttributeValuesO " +
e.getMessageO);

}

}

}//end of updateAttributeValues

//===
//======= ================ =====================
//===== ==
//===

public void shutDownRTIinOwnThreadO {

final SwingWorker worker = new SwingWorkerO -[
public Object construct() {

II...code that might take a while
//to execute is here...

sendControlInteraction("all","shutdown");
shutDownRTK);
parentCCenter.CCDisplay.setPhaseIcons("rticleanup", "red");
parentCCenter.CCDisplay.setPhaseIcons("shutdown", "orange");
return null;

}
};
worker.start();

}//end of shutDownRTIinOwnThread

//===
//===

public void shutDownRTK) {

//This method tries to resign from the federation execution
I land, destroy it....

D.dbgOut("Method:RTIControlModule.shutDownRTI");

if ((rtiState==RTI_SHUTDOWN) kk simState!=SIM_RUNNING) {

try {
// try to resign

rtiamb.resignFederationExecution

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 137

(ResignAction.DELETE.OBJECTS_AND_RELEASE_ATTRIBUTES);
D.dbgOut(fedname + ": resigned from federation");

rtiState=RTI_DOWN;
}

catch (RTIexception ex) {
D.dbgOut(fedname + ": caught exception while resigning " + ex);
rtiState=RTI_CORRUPTED;
return;

}

int tries =1;

while (tries<10) {

try {

// try to destory the federation
rtiamb.destroyFederationExecution("CMIF_HLA_Environment");
D.dbgOut(fedname + ": destroyed federation execution");

rtiState=RTI_DOWN;

}
catch (FederatesCurrentlyJoined ex) {

// this exception is okay

System.err.println
(fedname +
":: federates still joined — not destorying fedex");

}

catch (RTIexception ex) -[

rtiState=RTI_CORRUPTED;

System.err.println
(fedname +
": caught exception while destroying fedex " + ex);

}

tries++;

}

} else {

}

}//end of shutDownRTI

//============================—======================
//=====================================:================

private void runBackgroundTickThreadO {

//This method is started in the beginning and ensures, that whenever
//no other phase is using (and thus ticking) the RTI, ticks are sent.

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 138

final SwingWorker worker = new SwingWorkerO {
public Object construct() {

//background code goes here

D.dbgOutC Starting background tick thread!");

while (runTickThread) {

if (rtiState==RTI_SHUTDOWN && !shutdownInitiated){
shutdownlnitiated = true;
shutDownRTIinOwnThread();

if (rtiState==RTI_RUNNING) {

if (simState==SIM_READY |I simState==SIH_DONE ||
simState==SIM_ABORTED I|simState==SIM_CORRUPTED) {

try {
rtiamb.tickO;

} catch (Exception e) {

D.dbgOut("Exception in background tick thread:");
D.dbgOutC'...:" + e.getMessageO) ;

}
}

}

}//end of while

D.dbgOutC"Stopped background tick thread!");
return null;

}
};
worker.start(Thread.MIN.PRIORITY);

}//end of runBackgroundTickThread

//: ===
//======================== ==========================
//
//LISTENER
//

public void actionPerformed(ActionEvent event) {

String command = event.getActionCommandO;

D.dbgOut("RTIControlModule.actionPerformed() received: " + command);

String delim = "@";

if (command.indexOf(delim)!=-l){

StringTokenizer commandTokenizer =
new StringTokenizer(command, delim);

String operation = commandTokenizer.nextToken();
String issuedBy = commandTokenizer.nextTokenO;

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 139

D.dbgOut("#.... operation: " + operation +", isuued by: " +issuedBy);

sendControlInteraction(issuedBy, operation);

}

//

}//end of actionPerformed

};//end of RTIControlModule

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 140

D.1.5 The Class RTIControlModuleFedamb.java

// /
//CMIF_HLA_Environment vl.00, 7/2000 /
// /
//This is part of a Master's Thesis at the /
//Center for Multisource Information Fusion /
//SUNY at Buffalo /
// /
//All rights reserved: /
//packages CMIFControlCenter, CMIFExperimentParticipant,/
// util
//packages hla.rtil3.javal
//packages Java, javax

CMIF, Kai Harth /
U.S. DoD /
Sun Microsystems /

// /

package CMIF_HLA_Environment.CMIFControlCenter;

import CMIF_HLA_Environment.CMIFExperimentParticipant.*;
import CMIF_HLA_Environment.util.*;

// import the RTI classes into our namespace
import hla.rti13.javal.*;

import Java.util.Hashtable;

/* we only implement a small subset of FederateAmbassador methods, so derive
our ambassador from NullFederateAmbassador to pick up no-op implementations
of the others

*/

class RTIControlModuleFedamb extends NullFederateAmbassador {

/* these variables are checked by the main loop to detect when regulation
and constraint have been enabled

*/
public boolean mConstraintEnabled, mRegulationEnabled;

/* this variable is set by the federate ambassador when a time advance
is received; it should be cleared by the main loop as appropriate

*/
public boolean mTimeAdvanceGrant;

/* this variable is set to the last time that has been granted to the
federate ambassador (including time-advances due to enabling regulation
or constraint)

*/
public double mCurrentTime;

/* we're not really using this information, but let's define this callback
and throw an exception just to exercise throwing an exception from
Java back into C++

*/

public RTIControlModule parentRModule;

DebugHelper D = new DebugHelperO;

//

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 141

//

public RTIControlModuleFedamb (RTIControlModule parent) {

//This constructor is used mainly to set the handle
//to the parent RTIControlModule

D.dbgOutC'Instanciated RTIControlModuleFedamb");

parentRModule = parent;

}//end of contructor

//
//

public void startRegistrationForObjectClass(int theClass)

{

D.dbgOut("RTIControlModuleFedamb.startRegistrationForObj ectClass") ;
parentRModule.issueUpdates = true;

}//end of startRegistrationForObjectClass

//
//

public void stopRegistrationForObjectClass(int theClass)
throws ObjectClassNotPublished {

D.dbgOut("RTIControlModuleFedamb.stopRegistrationForObjectClass");
parentRModule.issueUpdates = false;

}//end of StopRegistrationForObjectClass

//
//

public void timeConstrainedEnabled(byte[] newtime)
throws FederatelnternalError {
mConstraintEnabled = true;
mCurrentTime = EncodingHelpers.decodeDouble(newtime);

}//end of timeConstrainedEnabled

//
//

public void timeRegulationEnabled(byte[] newtime)
throws FederatelnternalError {

mRegulationEnabled = true;
mCurrentTime = EncodingHelpers.decodeDouble(newtime);

}//end of timeRegulationEnabled

//
//

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 142

public void timeAdvanceGrant(byte[] newtime) throws FederatelnternalError {
mTimeAdvanceGrant = true;
mCurrentTime = EncodingHelpers.decodeDouble(newtime);

}//end of timeAdvanceGrant

II-
II-
public void removeObjectInstance(int oid,

byte[] time,
String tag,
EventRetractionHandle erh)

throws ObjectNotKnown {

/* we don't care about the time or event-retraction handle, so just
invoke the two-argument variation

*/

removeObjectInstance(oid, tag);

}//end of removeObjectInstance

II-
II-

public void remove0bjectlnstance(int oid,
String tag)

throws ObjectNotKnown {

D.dbgOut("Method: RTIControlModuleFedamb.removeObjectlnstance() "
+ oid);

// remove the object ID from our hash table of remote instances

CMIFExperimentParticipant templnstance =
(CMIFExperimentParticipant)parentRModule.
remoteParticipantsTable.remove(new Integer(oid));

/* if "remove" returns null, the object was not present, so throw
an exception

*/

if (templnstance != null) {

//remove the info and handle panel from the display

parentRModule.parentCCenter.
CCDisplay.
removeParticipantControlPanel(templnstance.getControlPanel());

} else {

throw new ObjectNotKnown("instance not present " + oid);

}

}//end of removeObjectlnstance

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 143

II-
II-
public void receivelnteractionCint iclass,

Receivedlnteraction phvpset,
byte[] time,
String tag,
EventRetractionHandle erh)

throws InteractionParameterNotKnown, InteractionClassNotKnown,
FederatelnternalError {

/* we don't care about the time or event-retraction handle, so just
invoke the three-argument variation

*/
receiveInteraction(iclass, phvpset, tag);

}//end of receivelnteraction

II-
II-
public void receiveInteraction(int iclass,

Receivedlnteraction phvpset,
String tag)

throws InteractionParameterNotKnown, InteractionClassNotKnown,
FederatelnternalError {

if (iclass == RTIControlModule.hMessageToBus) {

parentRModule.receiveMessageToBus(phvpset.tag);
return;

} else if (iclass == RTIControlModule.hStatusMessageH

parentRModule.receiveStatusMessage(phvpset,tag);

return;

} else {

/* all we know about are "Communication" interactions, so throw an
exception

*/

throw new InteractionClassNotKnown("class id is " + iclass);

}

}//end of receivelnteraction

II-
II-
public void discoverObjectInstance(int oid,

int oclass,
String theObjectName)

throws ObjectClassNotKnown {

D.dbgOutCMethod: RTIControlModuleFedamb.discoverObjectlnstance"
+ oid +", "
+ theObjectName);

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 144

if (oclass != parentRModule.hExperimentParticipant)
throw new ObjectClassNotKnown("unknown object class handle");

CMIFExperimentParticipant tmplnstance =
new CMIFExperimentParticipant(oid, parentRModule);

try {

tmplnstance.initialize(parentRModule.rtiamb);
tmplnstance.initGraphicInfo();

} catch (Exception e) {

D.dbgOutO'Exception in discoverObjectlnstance: " + e.getMessageO);

}
parentRModule.

remoteParticipantsTable.put(new Integer(oid),
tmplnstance);

parentRModule.parentCCenter.
CCDisplay.
addParticipantControlPanel(tmplnstance.getControlPanel());

}//end of discoverObjectlnstance

II-
II-
public void reflectAttributeValues(int oid,

ReflectedAttributes ahvpset,
byte[] time,
String theTag,
EventRetractionHandle rth)

throws ObjectNotKnown, AttributeNotKnown, FederatelnternalError {

/* we don't care about the time or event-retraction handle, so just
hand everything off to the RTIControlModule...without the
time or event retraction handle

*/

D.dbgOut("Method: RTIControlModuleFedamb.reflectAttributeValuesO");

parentRModule.reflectAttributeValues(oid, ahvpset, theTag);

}//end of reflectAttributeValues

II-
II-

public void reflectAttributeValues(int oid,
ReflectedAttributes ahvpset,
String theTag) throws ObjectNotKnown,
AttributeNotKnown, FederatelnternalError {

//...hand the callback off to the RTIControlModule

parentRModule.reflectAttributeValues(oid, ahvpset, theTag);

>//end of reflectAttributeValues

}//end of CMIFTestOlFedamb

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 145

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 146

D.2 The package CMIFExperimentParticipant

D.2.1 The Class CMIFExperimentParticipant.java

// /
//CMIF_HLA_Environment vl.OO, 7/2000 /
// /
//This is part of a Master's Thesis at the /
//Center for Multisource Information Fusion /
//SUNY at Buffalo /
// /
//All rights reserved: /
//packages CMIFControlCenter, CMIFExperimentParticipant,/
// util : CMIF, Kai Harth /
//packages hla.rtil3.javal : U.S. DoD /
//packages Java, javax : Sun Microsystems /
// /

package CMIF_HLA_Environment.CMIFExperimentParticipant;

import CMIF_HLA_Environment.CMIFControlCenter.*;
import CMIF_HLA_Environment.util.*;

import hla.rtil3.javal.*;

import j ava.awt.event.*;
import Java.awt.Color;
import Java.awt.Dimension;
import Java.util.*;
import java.math.Biglnteger;

import j avax.swing.*;
import javax.swing.border.*;
import Java.awt.*;

//=
//=

public class CMIFExperimentParticipant

{

//This class is the backbone of every implementation
//of an actual experiment participant.
//It contains all the funcionlality to initiate the fedex, contact the
//ControlCenter and so on...

//
//static variables

//handles

static int FEDEX D0WN=1;
static int FEDEX SETUP=2;
static int FEDEX_RUNNING=3;
static int FEDEX_SHUTD0WN=4;
static int FEDEX_C0RRUPT=5;

static int SIM_D0WN=6;

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 147

static int SIM_READY=7;
static int SIM_RUNNING=8;
static int SIM_D0NE=9;
static int SIM_C0RRUPT=10;
static int SIM_AB0RTED=11;

static int PARTICIPANT_BUSY=10;
static int PARTICIPANT_IDLE=11;
static int PARTICIPANT_C0RRUPT=12;

static int hRTIControlModule, hExperimentState, hExperimentParticipant,
hParticipantName, hParticipantState, hControlInteraction,
hControlMessageContent, hControlMessageRecipient, hMessageToBus,
hToBusMessageContent, hToBusSender, hToBusRecipient, hMessageFromBus,
hFromBusMessageContent, hFromBusSender, hFromBusRecipient,
hStatusMessage, hStatusMessageContent, hStatusMessageSender;

/* keep a reference to the RTIambassador for use from within TestNode
methods */

protected static RTIambassador sRtiAmb;

//
//instance variables:

DebugHelper D = new DebugHelper ();

RTIControlModule parentRModule;

public RTIambassador rtiamb;

CMIFExperimentParticipantFedamb fedamb;

public String participantName = "unnamed";

public int participantID;

public int controlModulelD;

public int participantState = PARTICIPANT.IDLE;

public int controlModuleState;

public boolean issueUpdates = false;

public boolean controlCenterPresent = false;

public boolean timinglsSet = false;
public boolean runTickThread = true;
public boolean shutdownlnitiated = false;

public boolean advanceRequested = false;
public boolean advanceGranted = false;
public double newFedambTime = 0.0;

int simState = SIM_D0WN;

int fedexState = FEDEX_D0WN;

//timing section

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 148

public String startTimeString = new StringO'0.0");
public String endTimeString = new StringC'100.0") ;
public String intervalTimeString = new String("1.0");
public String scaleString = new StringO'l.O");

public double startTimeDouble =0.0;
public double endTimeDouble = 100.0;
public double intervalTimeDouble = 1.0;
public double scaleDouble = 1.0;

//

//graphical components for the ddisplay section in the
//controlDisplay

JPanel participantControlPanel, infoPanel, buttonPanel;

JLabel nameLabel, statelconLabel;

Border lineBorder = BorderFactory.createLineBorder(Color.black, 1);
Border emptyBorder = BorderFactory.createEmptyBorder(8,8,8,8);

//icons and bullets

String path = new String("CMIF_HLA_Environment/CMIFControlCenter/icons/");

Imagelcon greenlcon = new ImageIcon(path+"grn.gif");
Imagelcon greenlconPulse = new Imagelcon(path+"grn_pulse.gif");
Imagelcon redlcon = new Imagelcon(path+"red.gif");
Imagelcon redlconPulse = new Imagelcon(path+"red_pulse.gif");
Imagelcon orangelcon = new ImageIcon(path+"orange.gif");
Imagelcon orangelconPulse = new Imagelcon(path+"orange_pulse.gif");

JButton shutDownButton, resetButton, stopButton, pingButton;

//=
//=
//local section, to use for independent instances

public CMIFExperimentParticipant(String name)

{
//This contructor is used to instanciate CMIFExperimentParticipant
//as a superclass for an independent implementation of an actual
//simualtion participant

D.dbgOut("Started ExperimentParticipant " + name);
D.setDebugState(DebugHelper.FULL.DEBUG);

participantName = name;

}//end of independent constructor

//===
//===

public void doSetupO {

//This method uses an own thread to run the methods
//launchRTK) and runPreSimulationO

final SwingWorker worker = new SwingWorkerO {

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 149

public Object construct() {

//...code that might take a while
//to execute is here...

launchRTK);
runPreSimulationO;

D.dbgOut("$#" + participantName +
" is done with doSetup Thread");

return null;

}

};

worker.st art();

runBackgroundTickThreadO;

>//end of launchRTIInOwnThread

public void launchRTK) {

//This method kicks off the RTI execution

fedexState=FEDEX_SETUP;

D.dbgGut("$Method: CMIFExperimentParticipant.launchRTK) ");

fedamb = new CMIFExperimentParticipantFedamb(this);

try {

// construct the RTI ambassador
rtiamb = new RTIambassadorO;

/* The "fedex" sets itself up asynchronously with respect to the
return of the "createFederationExecution" call, so join attempts
occuring quickly afterwards will fail. If this happens, we'll keep
looping and trying.

*/

int tries = 30;
while (tries > 0) {

try {
rtiamb.joinFederationExecution(participantName,

"CMIF_HLA_Environment",
fedamb);

break;
} catch (FederationExecutionDoesNotExist ex) {
D.dbgOut(participantName + ": federation does not exist");

// decrement the number of remaining tries and
//tick to kill some time

tries—;
rtiamb.tick(0.4, 0.5);

}
}

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 150

/* If we still haven't joined, try once more and let the exception
propagate. */

if (tries == 0)
rtiamb.joinFederationExecution(participantName,

"CMIF_HLA_Environment",
fedamb);

D.dbgOut(participantName + ": joined federation execution");

}
catch (RTIexception ex) {

/* catch exceptions that result from creating the RTI ambassador,
creating the federation executive, or joining the federation
execution */

D.dbgOut(participantName + ": caught exception " + ex);

fedexState=FEDEX_CORRUPT;

return;
}

try {

initialize(rtiamb);
D.dbgOut(participantName +

": established RTK->SIM handle mapping");

publishAndSubscribeO;
D.dbgOut(participantName + ": initialized DM disposition");

participantID =
rt i amb.regi st erObj e ctInstance(hExper imentPart i cipant);

D.dbgOut(participantName + ": registered Object Instance, ID: " +
participantID);

// enable time-constraint

rtiamb.enableTimeConstrainedO;

/* our federate ambassador will set a boolean variable to "true"
when it receives notification that constraint has been enabled;
we'll loop and tick until this happens

*/

while (!fedamb.mConstraintEnabled) {
rtiamb.tick(0.01, 0.2);

D.dbgOut(participantName + ": time constraint enabled 9 " +
fedamb.mCurrentTime);

rtiamb.enableAsynchronousDelivery();
D.dbgOut(participantName + ": asynchronous delivery enabled");

rtiamb.tick();

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 151

} catch (Exception e) {

D.dbgOutO'Exception occured in launchRTI: " +
e.getMessageO) ;

}

}//end of launchRTI

public void runPreSimulationO {

D.dbgOut("$Method: CMIFExperimentParticipant.runPreSimulationO ");

try {

//wait until the control center is located and listening
//for updates...then send the first update

while (!issueUpdates) {
tick(0.1, 0.2);

}

updateAttributeValues(getCurrentTimeO);

tick();

//wait for the first update from the control center

while (IcontrolCenterPresent)
tickO;

fedexState=FEDEX_RUNNING;
D.dbgOut("$#"+ participantName +" is in contact with the "+

"Control Center");

//now wait and tick until timing parameters have arrived,
//then call timingParametersChanged and doneWithSetup() to
//let the implementation know that it can proceed

while (ItiminglsSet)
tickO;

timingParametersChanged();

simState = SIM_READY;

updateAttributeValues(fedamb.mCurrentTime);
doneWithSetup();

D.dbg0ut("$#"+ participantName +" is done with runPreSimulation");

} catch (Exception e) {

fedexState = FEDEX.CORRUPT;

D.dbgOutC'Exception occured in launchRTI: " +
e.getMessage());

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 152

>

}//end of runPreSimulation

//===
//= ==

public void advanceOneStep() {

//this method is to be called if the advancement in time
//should follow the given increments.

double newTime = fedamb.mCurrentTime;

int iter=l;

while (newTime>=(startTimeDouble+iter*intervalTimeDouble)){
iter++;

}

newTime=startTimeDouble+iter*intervalTimeDouble;

D.dbgOut("$#fedambtime is: " + fedamb.mCurrentTime + ", trying to go to
+ newTime);

advanceTo(newTime);

}//end of advanceOneStep

//== ==
//===

public void advanceTo(double newTime) {

//..sets all values and flags so that the
//simulation thread will try to advance to the newTime.
//Feasibility of the newTime value is also checked

if (newTime>fedamb.mCurrentTime && newTime<=endTimeDouble) {

newFedambTime = newTime;

advanceGranted=false;
advanceRequested=true;

D.dbgOut(participantName +" waiting for new timing value ");

while (!advanceGranted);

updateAttributeValues(fedamb.mCurrentTime);

} else if (newTime>=endTimeDouble) {

D.dbgOut(participantName +" has reached simulation end time!");
simState=SIM_DONE;
updateAttributeValues(fedamb.mCurrentTime);
doneWithSimulationO;

} else {

D.dbgOut(participantName +" requested non feasible time value");

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 153

}

}//end of advanceTo

public boolean simlsRunningO {

return (simState==SIM_RUNNING);

}//end of simlsRunning

public void shutDownRTI() {

//This method tries to resign from the federation execution

D.dbgOut("Method:CMIFExperimentParticipant.shutDownRTI");

if ((fedexState==FEDEX_SHUTDOWN) && simState!=SIM_RUNNING) {

try {

//try to kill the instance

rtiamb.deleteObjectInstance(participantID,
EncodingHelpers.encodeDouble
(fedamb.mCurrentTime), "");

rtiamb.tick();

// try to resign

rtiamb.resignFederationExecution
(ResignAction.DELETE.OBJECTS_AND_RELEASE_ATTRIBUTES);

D.dbgOut(participantName + ": resigned from federation");

fedexState=FEDEX_DOWN;

doneWithShutDownO;

}

catch (RTIexception ex) {

D.dbgOut(participantName +
": caught exception while resigning " + ex);

fedexState=FEDEX_CORRUPT;
return;

}
}

}//end of shutDownRTI

public static void initialize(RTIambassador rtiamb) throws RTIexception {

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 154

// hold onto a reference to our RTI ambassador
sRtiAmb = rtiamb;

// obtain RTI handles to the FED entities used in the federation

hRTIControlModule = rtiamb.getObjectClassHandle("RTIControlModule");
hExperimentState = rtiamb.getAttributeHandle("ExperimentState",

hRTIControlModule);

hExperimentParticipant =

rtiamb.getObjectClassHandleC'CMIFExperimentParticipant");
hParticipantName = rtiamb.getAttributeHandle("ParticipantName",

hExperimentParticipant);
hParticipantState = rtiamb.getAttributeHandle("ParticipantState",

hExperimentParticipant);

hControlInteraction =
rtiamb.getlnteractionClassHandleC'ControlInteraction");

hControlMessageContent =
rt iamb.getParameterHandle("ControlMessageContent",

hControlInteraction);
hControlMessageRecipient =

rtiamb.getParameterHandle("ControlMessageRecipient",
hControlInteraction);

hMessageToBus= rtiamb.getInteractionClassHandle("MessageToBus");
hToBusMessageContent=

rtiamb.getParameterHandle("ToBusMessageContent",hMessageToBus);
hToBusSender=

rtiamb.getParameterHandle("ToBusSender",hHessageToBus) ;
hToBusRecipient=

rtiamb.getParameterHandle("ToBusRecipient",hMessageToBus);

hMessageFromBus= rtiamb.getInteractionClassHandle("MessageFromBus");
hFromBusMessageContent=

rtiamb.getParameterHandle("FromBusMessageContent",hMessageFromBus) ;
hFromBusSender=

rtiamb.getParameterHandle("FromBusSender",hMessageFromBus);
hFromBusRecipient=

rtiamb.getParameterHandle("FromBusRecipient",hMessageFromBus);

hStatusMessage= rtiamb.getlnteractionClassHandleC'StatusMessage");
hStatusMessageContent=
rtiamb.getParameterHandle("StatusMessageContent",hStatusMessage);

hStatusMessageSender=
rtiamb.getParameterHandle("StatusMessageSender".hStatusMessage) ;

}//end of initialize

II-
II-
public static void publishAndSubscribeO throws RTIexception {

//PUBLISHING
//create an outgiong attribute-handle set

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 155

AttributeHandleSet ahsetOut = AttributeHandleSetFactory.create(2);

// populate the set with the attributes we publish/subscribe

ahsetOut.add(hParticipantName);
ahsetOut.add(hParticipantState);

// perform the appropriate DM calls
sRtiAmb.publishObjectClass(hExperimentParticipant, ahsetOut);

sRtiAmb.publishlnteractionClass(hStatusMessage);
sRtiAmb.publishlnteractionClass(hHessageToBus);

//SUBSCRIBING
//create an attribute-handle set for experiment participant

AttributeHandleSet ahsetln = AttributeHandleSetFactory.create(1);

ahsetln.add(hExperimentState);

// perform the appropriate DM calls

sRtiAmb.subscribeObjectClassAttributes(hRTIControlModule, ahsetln);

sRtiAmb.subscribelnteractionClass(hMessageFromBus);
sRtiAmb.subscribelnteractionClass(hControlInteraction);

}//end of publishAndSubscribe

public void updateAttributeValues (double thetime) {

//This method is called to send changes attributes on the way.
//These are published via the RTI and reach all recipients, where in
//the end reflectAttributeValues() of any local representations is
//called to adopt the changes

try {

D.dbgOut("Method: CMIFExperimentParticipant.updateAttributeValues()");
D.dbgOut("# fedexState "+fedexState+", simState: "+simState);

// create a set for the outgoing attributes

SuppliedAttributes ahvpset = SuppliedAttributesFactory.create(2);

ahvpset.add(hParticipantName,
EncodingHelpers.encodeString(participantName));

ahvpset.add(hParticipantState,
EncodingHelpers.encodeInt(10*fedexState +simState));

// send the update on its way
sRtiAmb.updateAttributeValues(participantID,

ahvpset,
"Java");

} catch (Exception e) {

D.dbgOut("Exception in updateAttributeValues :" + e.getMessageO);

}

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 156

}//end of updateAttributeValues

public void receiveControlInteraction(ReceivedInteraction phvpset,
String tag) {

//This method is called when the Federate Ambassador receives
//any control interaction.
//Then it has to be evaluated, if the message is intended for this
//specific participant and if, the content has to be processed.

D.dbgOut(participantName + " received Controllnteraction, " + tag);

try {

String controlMessageRecipient =
EncodingHelpers.decodeString(phvpset.getValue(1));

D.dbgOut("$# for: " + controlMessageRecipient);

if (controlMessageRecipient.equals(participantName) | |
controlMessageRecipient.equals("all")) {

String controlMessage =
EncodingHelpers.decodeString(phvpset.getValue(0));

D.dbgOut("$#....message: " + controlMessage);

//

if (controlMessage.equals("shutdown")){
fedexState=FEDEX SHUTDOWN;

}

//

if (controlMessage.equals("ping")){

sendStatusMessage(reactToPingO) ;

}

//
if (controlMessage.startsWith("timing")){

evaluateTimingMessage(controlMessage);

}

//

if (controlMessage.equals("start_simulation")){

simState = SIM.RUNNING;

}

// _
if (controlMessage.equals("abort_simulation")){

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 157

simState =SIM_ABORTED;
abortSimulationQ;

}
>

} catch (Exception e){

D.dbgOut("Exception in CMIFExperimentParticipant."+
"receiveControlInteraction:");

D.dbgOut("#" + e.toStringO);

>

}//end of receiveControlInteraction

public void receiveMessageFromBus(ReceivedInteraction phvpset,
String tag) {

//This method is called when the Federate Ambassador receives
//any message from a bus.
//Then it has to be evaluated, if the message is intended for this
//specific participant and if, the'content has to be processed.

D.dbgOut(participantName + " received , MessageFromBus" + tag);

try {

String messageRecipient =
EncodingHelpers.decodeString(phvpset.getValue(1));

if(messageRecipient.equals(participantName)I|
messageRecipient.equals("all")) {

String messageSender =
EncodingHelpers.decodeString(phvpset.getValue(2));

String message =
EncodingHelpers.decodeString(phvpset.getValue(0)) ;

D.dbgOut("$#...sender: " +messageSender +
", recipient: " +messageRecipient+
" ,message: " + message);

receivedMessageOnBus(messageSender, message);

}

} catch (Exception e){

D.dbgOut("Exception in CMIFExperimentParticipant."+
"receiveMessageFromBus:");

D.dbg0ut("#" + e.toStringO);

}

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 158

}//end of receiveMessageFromBus

II-
II-
public void sendStatusMessage(String message) {

//This method is used to send a status message
//represented by the string 'message' to the control center.

try {

D.dbgOut(participantName +" is Sending StatusMessage");

// create the outgoing parameters set
SuppliedParameters phvpset = SuppliedParametersFactory.create(2);

// add the bytes to the parameter set
phvpset.add(hStatusMessageSender,

EncodingHelpers.encodeString(participantName));
phvpset.add(hStatusMessageContent,

EncodingHelpers.encodeString(message));

// send the interaction on its way
sRtiAmb.sendInteraction(hStatusMessage, phvpset, participantName);

} catch (Exception e) {

D.dbgOut(participantName + " Exception in "+
"sendStatusMessage:");

D.dbgOut("#" + e.toStringO);

}

}//end of sendStatusMessage

//==:=========
//==
//
//

public void sendMessageToBus(String message, String recipient) {

//This method is used to send a message
//represented by the string 'message' to the communication bua.

try {

D.dbgOut(participantName +" is Sending MessageToBus");

// create the outgoing parameters set
SuppliedParameters phvpset = SuppliedParametersFactory.create(3);

// add the bytes to the parameter set
phvpset.add(hToBusSender,

EncodingHelpers.encodeString(participantName));
phvpset.add(hToBusRecipient,

EncodingHelpers.encodeString(recipient));

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 159

phvpset.add(hToBusMessageContent,
EncodingHelpers.encodeString(message));

// send the interaction on its way
sRtiAmb.sendlnteractionOiMessageToBus, phvpset, participantName);

> catch (Exception e) {

D.dbgOut(participantName + " Exception in "+
"sendMessageToBus:");

D.dbgOut("#" + e.toStringO);

}

}//end of sendMessageToBus

//== ==============
//==== === ==

public double getCurrentTime() {

//This method can be used from a subclass of ExperimentParticipant.
//This way the user does not have to know about and access the
//Fedeate Ambassador

return fedamb.mCurrentTime;

}//end of getCurrentTime

//===
//===

public void tick(double timel , double time2) {

//This method invokes the RtiAmbassador mehtod of the
//same name. So the the user implementing subclasses of
//ExperimentParticipant does not have to know about the
//RtiAmb mechanisms and exceptions.
//tick() in general grants the rtiamb time to do operations.

try {

rtiamb.tick(timel, time2);

} catch (Exception e) {

D.dbgOut("Exception while trying to tick the rtiamb :" +
e.getMessageO);

}

}//end of tick

//========——===

public void tickO {

// as above, just without the max and min times.

try {

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 160

rtiamb.tickO;

} catch (Exception e) {

D.dbgOut("Exception while trying to tick the rtiamb :" +
e.getMessage());

}

3V/end of tick

II-
II-
private void evaluateTimingMessage(String message) {

//This method receives as input the encoded timing string
//sent by the control center

String delim = "#";

StringTokenizer messageTokenizer =
new StringTokenizer(message, delim);

messageTokenizer.nextTokenO;

while(messageTokenizer.hasMoreTokensO) {

convertTimeStrings(messageTokenizer.nextTokenO,
messageTokenizer.nextTokenO);

timinglsSet = true;
timingParametersChangedO;

}//end of evaluateTimingMessage

//
//

private void convertTimeStrings(String whichOne, String stringTime) {

//This method attempts to convert the string inputs made for time management
//(either from file or from the text boxes) to the neccessare double values.
//It returns (true/false) if the attempt was successful...

double tmpDouble=0.0;

tmpDouble = (new Double(stringTime)).doubleValueO;

//D.dbgOut("$#converted to: " + tmpDouble);

if (whichOne.equals("start")){
startTimeDouble = tmpDouble;
startTimeString= (new Double(startTimeDouble)).toStringO;

if (whichOne.equals("end")){
endTimeDouble = tmpDouble;
endTimeString= (new Double(endTimeDouble)).toStringO;

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 161

if (whichOne.equalsC'interval")) {
intervalTimeDouble = tmpDouble;
intervalTimeString= (new Double(intervalTimeDouble)).toStringO;

}

if (whichOne.equalsO'scale")){
scaleDouble = tmpDouble;
scaleString= (new Double(scaleDouble)).toStringO;

}

}//end of convertTimeStrings

//=
//=

private void runBackgroundTickThreadO {

//This method is started in the beginning and ensures, that whenever
//no other phase is using (and thus ticking) the RTI, ticks are sent.

final SwingWorker worker = new SwingWorkerO {
public Object construct() {

//background code goes here

D.dbgOutCStarting background tick thread!");

while (runTickThread) {

if (fedexState==FEDEX_SHUTDOWN && Sshutdownlnitiated)
{

shutdownlnitiated = true;
shutDownRTK) ;

}

if (fedexState==FEDEX_RUNNING) {

//if ((simState==SIM_READY)I I(simState==SIM_ABORTED)I I
//(simState==SIM_CORRUPT)) {

if (simState!=SIM_RUNNING && simState!=SIH_DOWN) {

try {

rtiamb.tick(0.1, 0.3);

} catch (Exception e) {

D.dbgOut(participantName +
"Exception in background tick thread:");

D.dbgOutC'...:" + e.getMessageO) ;

}
}

}

//
//
// _

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 162

//
//
//
//DURIG SIMULATION

if (simState==SIM_RUNNING) {

D.dbgOut("$# " +participantName +
": entered simulation background thread");

try {

//
//set fedamb time to desired simulation start time

fedamb.mTimeAdvanceGrant=false;

rtiamb.timeAdvanceRequest(EncodingHelpers.encodeDouble
(startTimeDouble));

D.dbgOut("$# requested timeAdvanceRequest");

// loop and tick until we receive the time advance

while (!fedamb.mTimeAdvanceGrant) -[
rtiamb.tick(0.01, 0.3);

D.dbgOut("$# " +participantName +": Set fedamb to start time");

updateSimTime(fedamb.mCurrentTime);

} catch (Exception e) {

D.dbgOut(participantName +" Exception in runSimulationO");
D.dbgOut("# " + e.toStringO);

s imStat e=SIM_CORRUPT;

}

try {

while (simState==SIM_RUNNING) {

if (advanceRequested) {

D.dbgOut("$#" +participantName +
" trying to set fedamb to time " +newFedambTime);

fedamb.mTimeAdvanceGrant=false;

rtiamb.timeAdvanceRequest(EncodingHelpers.encodeDouble
(newFedambTime));

// loop and tick until we receive the time advance

while (!fedamb.mTimeAdvanceGrant) {
rtiamb.tick(0.01, 0.3);

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 163

advanceGranted = true;
advanceRequested = false;

D.dbgOut("$#" +participantName +" Set fedamb to time " +
fedamb.mCurrentTime);

updateSimTime(fedamb.mCurrentTime);

}

rtiamb.tickO ;

}//end of while

} catch (Exception e) {

D.dbgOut(participantName +" Exception in Simulation thread!");
D.dbgOut("# " + e.toStringO);

simState=SIM_CORRUPT;

}

>

II-
II-
II-

}//end of while

D.dbgOut(participantName +
"Stopped background tick thread!");

return null;
}

>;
worker.start();

}//end of runBackgroundTickThread

//remote section (used by the RTIContolModule to keep reference
//with remote instances)

public CMIFExperimentParticipant(int oid, RTIControlModule parent) {

//This constructor is used from the RTIControlModule to instanciate
//representations of the remote experiment participants

D.dbgOut("Started ExperimentParticipant " + oid);
D.setDebugState(DebugHelper.FULL_DEBUG);

participantID = oid;
. parentRModule = parent;

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 164

}//end of remote constructor

//=
//=

public void reflectAttributeValues(ReflectedAttributes ahvpset) {

//This method updates the attribute values of an instance kept at the
//controlModule. It is at the "receiving end" of the update process
//initiated by the updateAttributeValuesO method above, which is used
//in the independent instances of an Experimentparticipant

//now, analyze the attribute handle set

D.dbgOut("Method:CMIFExperimentParticipant.reflectAttributeValues()");

try {

int size = ahvpset.size();

// loop through the handle-value pairs in the set

for (int a = 0; a < size; a++) {

// obtain the value of the handle

int attributeHandle = ahvpset.getHandle(a);

if (attributeHandle == hParticipantName) {
D.dbgOut("$#reflectAttributeValues: found participantName");
participantName =
EncodingHelpers.decodeString(ahvpset.getValue(a)) ;

else if (attributeHandle == hParticipantState) {
participantState =

EncodingHelpers.decodelnt(ahvpset.getValue(a));

D.dbgOut("$#reflectAttributeValues: found participantState" +
participantState);

Biglnteger stateBI = Biglnteger.valueOf(participantState);

fedexState= (stateBI.divide(Biglnteger.valueOf(10))).intValue();
simState= (stateBI.mod(Biglnteger.valueOf(10))).intValueO;
D.dbgOut("$#simState: " +simState+", fedexState: " +fedexState);

}

else

// all we know is name and state, so throw an exception
throw new AttributeNotKnown("attribute handle is " +

attributeHandle);

updateControlPanelO;

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 165

} catch (Exception e) {

D.dbgOut("Exception in reflectAttributeValues :" + e.getMessageO);

}

}//end of reflectAttributeValues

//=
//=

public void initGraphicInfoO {

//This method puts together the information panel
//that allows access to each located participant.
//It will be incorporated into the participants pane
//in the control Display...

D.dbgOut("Method:CMIFExperimentParticipant.initGraphicInfo()");

//
//info section

nameLabel = new JLabel(participantName);
nameLabel.setForeground(Color.black);

statelconLabel = new JLabel(orangelcon);

infoPanel = new JPanel(new FlowLayout(FlowLayout.LEFT));

infoPanel.add(statelconLabel);

infoPanel.add(new JLabelC'Name: "));
infoPanel.add(nameLabel);

//
//button section

buttonPanel = new JPanelO;

shutDownButton = new JButton("Shut Down");
shutDownButton.setToolTipText("...forces to resign from federation");
shutDownButton.addActionListener((ActionListener)parentRModule);

resetButton = new JButton("Reset");
resetButton.setToolTipText("...resets to inital state");
stopButton = new JButton("Stop");
stopButton.setToolTipText("...stops current activity");
pingButton = new JButtonC'Ping");
pingButton.setToolTipText("...pings for status report");
pingButton.addActionListener((ActionListener)parentRModule);

buttonPanel.add(shutDownButton);
buttonPanel.add(pingButton);
buttonPanel.add(stopButton);
buttonPanel.add(resetButton);

//
//together

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 166

participantControlPanel = new JPanelO;

part i c ipantControlPanel.
setBorder(new CompoundBorder(emptyBorder,lineBorder)) ;

participantControlPanel.add(infoPanel);
participantControlPanel.add(Box.createHorizontalGlue());
participantControlPanel.add(buttonPanel);

participantControlPanel.setMaximumSize(new Dimension(600,160));

}//end of initGraphicInfo

//=
//=

private void updateControlPanel(){

//This method updates the information displayed
//in the control panel to reflect the attribute values
//of this participant

nameLabel.setText(participantName);
shutDownButton.setActionCommand("shutdown@" + participantName);
pingButton.setActionCommand("ping@" + participantName);

updateStatelconLabelO;

participantControlPanel.revalidateO;

}//end of updateControlPanel

//=========

public void updateStatelconLabelO{

if (simState==SIM_DOWN)
statelconLabel.setlcon(orangelcon);

if (simState==SIM_READY)
statelconLabel.setlcon(greenlcon);

if (simState==SIM_RUNNING)
statelconLabel.setlcon(greenlconPulse);

if (simState==SIM_CORRUPT I I fedexState==FEDEX_CORRUPT)
statelconLabel.setlcon(redlconPulse);

if (simState==SIM_ABORTED)
statelconLabel.setlcon(redlconPulse);

if (simState==SIM_DONE)
statelconLabel.setlcon(redlcon);

statelconLabel.revalidate();

}//end of updateStatelconLabel

//=
//=

public JPanel getControlPaneK) {

//...convenience method to get a handle to the
//handle Panel of this participant.

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 167

D.dbgOut("Method:CMIFExperimentParticipant.getControlPanel()");

return participantControlPanel;

}//end of getControlPanel

//===
//===
//+ ++++ ++++++ ++++++ +++++ +++

//=—===

//The following methods are used for callbacks and are empty
//They have to be overridden in the participant implementation

//===
//===

public void receivedMessageOnBus(String sender,
String content) {

//Callback after a message was received

}//end of receivedMessageOnBus

//===

public void doneWithSetupO {

//This method is called after the federate is all set up,
//in contact with the ControlCenter and supplied with neccessary
//information for the simulation run

}//end of doneWithSetup

//=====:== =====

public void doneWithShutDown(){

//This is the callback after the federation is successfully
//resigned

}//end of doneWithShutDown

//—===

public void doneWithSimulation()-[

//This is the callback after the federation is successfully
//resigned

}//end of doneWithSimulation

//===

public String reactToPingO {

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 168

Ilk callback after receiving a ping request from the ControlCenter
//The string that has to be returned will be sent to the ControlCenter
//as a status message. Other activities can be implemented in
//overriding this in the participant implementation

String pingReactionString = new String(participantName +
" is reacting to PING");

return pingReactionString;

}//end of reactToPing

//=

public void timingParametersChanged() {

//This is a callback after the ControlCenter has sent
//timing information (start, stop, scale and increment).
//The internal processing is already done. This is to notify
//the implementation of the new situation.

}Ilend of timingParametersChanged

public void updateSimTime(double simTime) {

//This callback can be overriden to do something each time a new
///simulation time is set...

}//end of updateSimTime

//=
//=

public void waitForSimulationO {

while (simState!=SIM_RUNNING);

}//end of waitForSimulation

//=======
//=======

public void abortSimulationO {

//This is a callback after the ControlCenter has sent
//the signal to abort the simulation

}//end of abortSimulation

}//end of class CMIFExperimentParticipant

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 169

D.2.2 The Class CMIFExperimentParticipantFedamb.java

// /
//CMIF_HLA_Environment vl.OO, 7/2000 /
// /
//This is part of a Master's Thesis at the /
//Center for Multisource Information Fusion /
//SUNY at Buffalo /
// /
//All rights reserved: /
//packages CMIFControlCenter, CMIFExperimentParticipant,/
// util
//packages hla.rtil3.javal
//packages Java, javax

CMIF, Kai Harth /
U.S. DoD /
Sun Microsystems /

// /

package CMIF_HLA_Environment.CMIFExperimentParticipant;

import CMIF_HLA_Environment.CMIFControlCenter.*;
import CMIF_HLA_Environment.util.*;

// import the RTI classes into our namespace
import hla.rtil3.javal.*;

/* we only implement a small subset of FederateAmbassador methods, so derive
our ambassador from NullFederateAmbassador to pick up no-op implementations
of the others

*/

class CMIFExperimentParticipantFedamb extends NullFederateAmbassador {

/* these variables are checked by the main loop to detect when regulation
and constraint have been enabled

*/
public boolean mConstraintEnabled, mRegulationEnabled;

/* this variable is set by the federate ambassador when a time advance
is received; it should be cleared by the main loop as appropriate

*/

public boolean mTimeAdvanceGrant;

/* this variable is set to the last time that has been granted to the
federate ambassador (including time-advances due to enabling regulation
or constraint)

*/

public double mCurrentTime;

/* we're not really using this information, but let's define this callback
and throw an exception just to exercise throwing an exception from
Java back into C++

*/

public CMIFExperimentParticipant parentParticipant;

DebugHelper D = new DebugHelperO;

//
//

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 170

public CMIFExperimentParticipantFedamb (CMIFExperimentParticipant parent) {

//This constructor is used mainly to set the handle
//to the parent RTIControlModule

D.dbgOut("Instanciated CMIFExperimentParticipantFedamb");

parentParticipant = parent;

}//end of contructor

//
//

public void startRegistrationForObjectClass(int theClass)

D.dbgOutC'CMIFExperimentManagerFedamb.startRegistrationForObjectClass");
parentParticipant.issueUpdates = true;

>//end of startRegistrationForObjectClass

//
//

public void stopRegistrationForObjectClass(int theClass)

D.dbgOut("CMIFExperimentManagerFedamb.stopRegistrationForObjectClass");
parentParticipant.issueUpdates = false;

}//end of startRegistrationForObjectClass

//
//

public void timeRegulationEnabled(byte[] newtime)
throws FederatelnternalError {

mRegulationEnabled = true;
mCurrentTime = EncodingHelpers.decodeDouble(newtime);

>//end of timeRegulationEnabled

//
//

public void timeConstrainedEnabled(byte[] newtime)
throws FederatelnternalError {
mConstraintEnabled = true;
mCurrentTime = EncodingHelpers.decodeDouble(newtime);

}//end of timeConstrainedEnabled

//
//

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 171

public void timeAdvanceGrant(byte[] newtime) throws FederatelnternalError {

mTimeAdvanceGrant = true;
mCurrentTime = EncodingHelpers.decodeDouble(newtime);

}//end of timeAdvanceGrant

II-
II-
public void removeObjectInstance(int oid,

byte[] time,
String tag,
EventRetractionHandle erh)

throws ObjectNotKnown {

I* we don't care about the time or event-retraction handle, so just
invoke the two-argument variation

*/
removeObjectInstance(oid, tag);

yIlend of removeObjectInstance

II-
II-
public void removeObjectInstance(int oid,

String tag)
throws ObjectNotKnown {

//This method reacts to a callback that the RTIControlModule is
//no longer present....

D.dbgOut("Method: RTIControlModuleFedamb.removeObjectInstance()");

if (oid==parentParticipant.controlModulelD) {

parentParticipant.controlModuleID=-l;
parentParticipant.controlCenterPresent = false;

} else {

throw new ObjectNotKnown("unknown object class handle");

}

}//end of removeObjectlnstance

II-
II-
public void discoverObjectInstance(int oid,

int oclass,
String theObjectName)

throws ObjectClassNotKnown {

//This method is called when the federate discovers the
//presence of the RTIControlModule.
//Then, the object ID of the' controlModule is noted for future
//reference

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 172

D.dbgOut("Method: CMIFExperimentParticipantFedamb.discoverObjectInstance");

if (oclass != parentParticipant.hRTIControlModule)
throw new ObjectClassNotKnown("unknown object class handle");

parentParticipant.controlModulelD = oid ;
parentParticipant.controlCenterPresent = true;

}//end of discoverObjectInstance

II-
II-

public void receiveInteraction(int iclass,
Receivedlnteraction phvpset,
byte[] time,
String tag,
EventRetractionHandle erh)

throws InteractionParameterNotKnown, InteractionClassNotKnown,
FederatelnternalError {

/* we don't care about the time or event-retraction handle, so just
invoke the three-argument variation

*/
receiveInteraction(iclass, phvpset, tag);

}//end of receivelnteraction

II-
II-
public void receivelnteraction(int iclass,

Receivedlnteraction phvpset,
String tag)

throws InteractionParameterNotKnown, InteractionClassNotKnown,
FederatelnternalError {

if (iclass == CMIFExperimentParticipant.hMessageFromBus) {

parentParticipant.receiveMessageFromBus(phvpset,tag);

return;

} else if (iclass == CMIFExperimentParticipant.hControlInteractionH

parentParticipant.receiveControlInteraction(phvpset,tag);

return;

} else {

/* all we know about are "Communication" interactions, so throw an
exception

*/

throw new InteractionClassNotKnown("class id is " + iclass);

}

}//end of receivelnteraction

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 173

II-
II-
public void reflectAttributeValues(int oid,

ReflectedAttributes ahvpset,
byte[] time,
String theTag,
EventRetractionHandle rth)

throws ObjectNotKnown, AttributeNotKnown, FederatelnternalError {

/* we don't care about the time or event-retraction handle, so just
invoke the three-argument variation

*/

reflectAttributeValues(oid, ahvpset, theTag);

}//end of reflectAttributeValues

II-
II-
public void reflectAttributeValues(int oid,

ReflectedAttributes ahvpset,
String theTag) throws ObjectNotKnown,
AttributeNotKnown, FederatelnternalError {

//This method is invoked when the remote RTIControlModule updates
//its attributes

D.dbgOutCMethod: CMIFExperimentParticipantFedamb." +
"reflectAttributeValues()");

try {

int size = ahvpset.sizeO ;

// loop through the handle-value pairs in the set

for (int a = 0; a < size; a++) {

// obtain the value of the handle

int ahandle = ahvpset.getHandle(a);

if (ahandle == parentParticipant.hExperimentState) {
int tmplnt =
EncodingHelpers.decodelnt(ahvpset.getValue(a));

}
else

// all we know is population and name, so throw ami exception
throw new AttributeNotKnownC'attribute handle is " + ahandle);

}
}

catch(ArrayIndexOutOfBounds ex) {

/* we shoudn't get this exception, but Java requires us to have a
handler */

throw new FederatelnternalError("caught array index out of bounds");

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 174

}

}//end of reflectAttributeValues

}//end of CMIFExperimentParticipanttFedamb

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 175

D.3 The package DemoApplication

D.3.1 The Class ContactGenerator.java

// /
//CMIF HLA.Environment vl.OO, 7/2000 /

" ', //This is part of a Master's Thesis at the /
//Center for Multisource Information Fusion /
//SUNY at Buffalo /
// /
//All rights reserved: /
//packages CMIFControlCenter, CMIFExperimentParticipant,/
// util
//packages hla.rtil3.javal
//packages Java, javax

CMIF, Kai Harth /
U.S. DoD /
Sun Microsystems /

// /

package DemoApplication;

import CMIF_HLA_Environment.CMIFExperimentParticipant;

import CMIF_HLA_Environment.CMIFControlCenter.*;
import CMIF_HLA_Environment.util.*;

import hla.rtil3.javal.*;

import java.awt.*;
import java.awt.event.*;
import Java.util.*;

import javax.swing.*;

//========== ===
//==

public class ContactGenerator
extends CMIFExperimentParticipant

implements ActionListener

i
//This class implements a simple representation of a experiment
//participant
//The user can navigate a virtual airplane over a 2D grid. The positions
//are sent out, as radar contact reports, to the participating
//TacticDisplays

DebugHelper D = new DebugHelperO;

JFrame mainWindow;

GeneratorPanel displayPanel;

//default display parameters

public Dimension displayDimension =
new Dimension(300,300); //display in pixel

public Rectangle displayArea =

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 176

new Rectangle(0,0,30000,30000); //real area (in m) which is mapped to display
public Point radarLocation =
new Point (0,0); //location of the radar sensor

public int radarRange = 0; //radius of the radar reception

public Vector radarContacts = new VectorO;

JLabel timeLabel;

JButton clearButton;

JTextField velocityTextField, headingTextField,
xPosTextField, yPosTextField;

String xPosString = new StringC'O");
String yPosString = new StringC'O");
String velocityString = new String("100");
String headingString = new String("45");

double deg2rad = Math.PI/180;

Double xNew, yNew;

//=======
//=======

public static void main(String argv[]) {.

ContactGenerator instance =
new ContactGenerator(argv);

}//end of main

//=
//=

public ContactGenerator(String[] argv) {

//Constructor of the ContactGenerator Class
//
//l) Super Class CMIFExperimentParticipant is instanciated
//2) other necessary setup methods are kicked off

super("ContactGenerator");

D.dbgOut("Started ContactGenerator :");

if (argv.length>=l) -(

//set values for display dimensions and radar reception
//(right now, only the default values are used)

}

doSetupO;

createDisplayO;

waitForSimulationO;

radarContacts.add(new Point(new Integer(xPosTextField.getTextO).intValueO,

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 177

new IntegerCyPosTextField.getTextO).intValue()));
startSimulationO;

}//end of constructor

//=
//=

private void createDisplayO {

//This method initializes the display component for the
//contact generator

mainWindow = new JFrame(participantName);

//
//radar display

displayPanel = new GeneratorPanel(this);

JPanel centerPanel = new JPanelO;
centerPanel.setBorder(BorderFactory.createEmptyBorder(5,5,5,5));
centerPanel.add(displayPanel);

//
//simulation

JPanel simulationPanel = new JPanel(new GridLayout(l,0));

statelconLabel = new JLabel(orangelcon);
timeLabel = new JLabeK"—") ;
t imeLabel.setForeground(Color.black);

simulationPanel.add(statelconLabel);
simulationPanel. add (new JLabeK" "));
simulationPanel.add(new JLabel("Time: "));
simulationPanel.add(timeLabel);
simulationPanel.setBorder(BorderFactory.createTitledBorder(lineBorder,

"Simulation"));

//
//target

JPanel targetPanel = new JPanel(new GridLayout(0,2));

velocityTextField = new JTextField(velocityString, 20);
headingTextField= new JTextField(headingString, 20);
xPosTextField= new JTextField(xPosString, 20);
yPosTextField= new JTextField(yPosString, 20);

targetPanel.add(new JLabel("X Position (m): "));
targetPanel.add(xPosTextField);
targetPanel.add(new JLabel("Y Position (m): "));
targetPanel.add(yPosTextField);
targetPanel.add(new JLabel("Velocity (m/sec): "));
targetPanel.add(velocityTextField);
targetPanel.add(new JLabel("Heading (deg): "));
targetPanel.add(headingTextField);

targetPanel.setBorder(BorderFactory.createTitledBorder(lineBorder, "Target"));

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 178

//
//clear button

clearButton = new JButton("Clear Display");
clearButton.addActionListener(this);

JPanel clearPanel = new JPanelO;
clearPanel.add(clearButton);

//
//together

JPanel southPanel = new JPanel(new BorderLayout()) ;
southPanel.setBorder(BorderFactory.createEmptyBorder(5,5,5,5));

southPanel.add(simulationPanel.BorderLayout.WEST);
southPanel.add(targetPanel,BorderLayout.EAST);
southPanel.add(clearPanel.BorderLayout.SOUTH);

mainWindow.getContentPaneO.add(centerPanel, BorderLayout.CENTER);
mainWindow.getContentPaneO.add(southPanel, BorderLayout.SOUTH);

mainWindow.packO ;
mainWindow.show();

}//end of createDisplay

//== ======

//=== ===

public void determineNextPositionO {

//this method determines the subsequent contact position from
//the old position, velocity and heading

D.dbgOut("$" + participantName + ":determineNextPositionO");

double xNow=0.0;
double yNow= 0.0;
double velocity=100;
double heading=0;

try {

xNow = (new Double(xPosTextField.getText())).doubleValueO;
yNow = (new Double(yPosTextField.getText())).doubleValueO;

velocity = (new Double(velocityTextField.getText())).doubleValueO;
heading = deg2rad*(new Double(headingTextField.getText 0)).doubleValue();

} catch(Exception e) {

D.dbgOut (participantName +
" :problem with converting numbers from Textfields");

headingTextField.setText((new Double(heading)).toStringO);
velocityTextField.setText((new Double(velocity)).toStringO);
headingTextField.revalidateO;
velocityTextField.revalidateO;

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 179

}

xNew = new Double(xNow + intervalTimeDouble*velocity*Math.sin(heading));
yNew = new Double(yNow + intervalTimeDouble*velocity*Math.cos(heading));

xPosTextField.setText(xNew.toString());
yPosTextField.setText(yNew.toString());

xPosTextField.revalidateO;
yPosTextField.revalidate() ;

radarContacts.add(new Point(xNew.intValue(),
yNew.intValue()));

}//end of determineNextPosition

public void sendContactPositionO {

//This method takes the contact position and reports it
//to the listening tactic displays

String positionReport =
new String ("Contact: X=#" + xNew.toStringO + "# Y=#" + yNew.toStringO);

sendMessageToBus(positionReport, "all");

}//end of determineNextPosition

//==
//===
//===

//callbacks from the experiment participant

public void receivedMessageOnBus(String sender,
String content) {

//Callback after a message was received
//..does nothing, since the Contact generator only send out messages

D.dbgOut("$#" + participantName + " received message from " + sender +
", content:" + content);

}//end of receivedMessageOnBus

//=============== =======================================
//===

public void doneWithSetupO {

//This method is called after the federate is all set up,
//in contact with the ControlCenter and supplied with neccessary
//information for the simulation run

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 180

//Overriding the empty callback

updateStatelcoiiLabelO;

}//end of doneWithSetup

//=
//=

public void doneWithShutDown(H

//This is the callback after the federation is successfully
//resigned

D.dbgOut(participantName + ": done with RTI shutdown, now exiting");

mainWindow.dispose();

System.exit(0);

}//end of doneWithShutDown

//==
//==

public String reactToPingO

//A callback after receiving a ping request from the ControlCenter
//The string that has to be returned will be sent to the ControlCenter
//as a status message. Other activities can be implemented in
//overriding this in the participant implementation

String pingReactionString = new String(participantName +
" is reacting to PING");

return pingReactionString;

}//end of reactToPing

//== :====

public void timingParametersChangedO {

//This is a callback after the ControlCenter has sent
//timing information (start, stop, scale and increment).
//The internal processing is already done. This is to notify
//the implementation of the new situation.

timeLabel.setText(startTimeString);
timeLabel.revalidateQ;

}//end of timingParametersChanged

//=
//=

public void startSimulationQ {

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 181

D.dbgOut(participantName + ": startSimulationO") ;

updateStatelconLabelO;

while (simlsRunningO) {

determineNextPositionO;

displayPanel.repaint();

sendContactPositionO ;

advanceOneStepO ;

}

}//end of startSimulation

//=
//=
//=
//=

public void doneWithSimulation(M

//This is the callback after the simulation is done
//(=simulation time reached upper limit)

updateStatelconLabelO;

}//end of doneWithSimulation

//=
//=

public void updateSimTime(double simTime) {

//This callback can be overriden to do something each time a
//new simulation time is set...

timeLabel.setText((new Double(fedamb.mCurrentTime)).toStringO);

}//end of updateSimTime

//=
//=

public void abortSimulationO {

D.dbgOut(participantName + ": abortSimulationO");

updateStatelconLabelO;

}//end of abortSimulation

II
//LISTENER
II

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 182

public void actionPerformed(ActionEvent event) {

String command = event.getActionCommandO;

D.dbgOut(participantName +" received: " + command);

if (command.equals("Clear Display")){

radarContacts.clear();

displayPanel.repaint();
}

}//end of actionPerformed

}//end of ContactGenerator

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 183

D.3.2 The Class GeneratorPanel.java

// /
//CMIF HLA.Environment vl.OO, 7/2000 /

// ', //This is part of a Master's Thesis at the /
//Center for Multisource Information Fusion /
//SUNY at Buffalo /
// /
//All rights reserved: /
//packages CMIFControlCenter, CMIFExperimentParticipant,/
// util
//packages hla.rtil3.javal
//packages Java, javax

CMIF, Kai Harth /
U.S. DoD /
Sun Microsystems /

// /

package CMIF_HLA_Environment.CMIFExperimentParticipant;

import CMIF_HLA_Environment.util.*;

import java.awt.*;
import j ava.awt.event.*;
import java.util.*;

import javax.swing.*;
import j avax.sw ing.border.*;

//=
//=

public class GeneratorPanel
extends JPanel {

//This class provides the actual display functionalities to
//the generator panel aplication

Dimension preferredSize = new Dimension(200, 200);

DebugHelper D = new DebugHelper(DebugHelper.FULL_DEBUG);

ContactGenerator parentContactGenerator;

Border lineBorder = BorderFactory.createLineBorder(Color.black, 2);
Border emptyBorder = BorderFactory.createEmptyBorder(8,8,8,8);

Dimension displayDimension ; //display in pixel
Rectangle displayArea; //real area (in m) which is mapped to display

int gridDivisions = 5; //the smaller side of the display will be
//divided into this number of grid elements

float gridlncrement;

Color backgroundColor = new Color(0,102,102);
Color gridColor = new Color(0, 255, 50);

Color contactColor = new Color(255, 0, 0);

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 184

public GeneratorPanel (ContactGenerator parent) {

//constructor

D.dbgOutCStarted Tactic Display Panel");

parentContactGenerator = parent;

displayDimension = parentContactGenerator.displayDimension ;
displayArea = parentContactGenerator.displayArea;

setBackground(backgroundColor);
setForeground(gridColor);

setBorder(lineBorder);

//determine grid parameters

int smallerSide;

if (displayDimension.height>displayDimension.width) {
smallerSide=displayDimension.width;

} else {
smallerSide=displayDimension.height;

gridlncrement= smallerSide/gridDivisions;

}//end of constructor

public Dimension getPreferredSizeO {

return displayDimension;

}

//======= =================== ==================== =
//=============== ====================== ==============

public void paintComponent (Graphics g) {.

//This method does the actual painting work and overrides
//paintComponent() in JPanel

super.paintComponent(g); //paint background

//paint grid

g.setColor(gridColor);

int nxG=l;

while ((new Float(nxG*gridIncrement)).intValueO <displayDimension.width){
g.drawLine((new Float(nxG*gridIncrement)).intValueO,0,

(new Float(nxG*gridIncrement)).intValueO,
displayDimension.height);

nxG++;

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 185

}

int nyG=l;

while ((new Float(nyG*gridIncrement)).intValueO <displayDimension.height){

g.drawLine(0,(new Float(nyG*gridIncrement)).intValueO,
displayDimension.width,
(new Float(nyG*gridIncrement)).intValue());

nyG++;

}

//paint axes

int textHeight=12;
int textWidth=55;

g.drawString("x=" +(new Integer(displayArea.x)).toStringO,
10,displayDimension.height - textHeight);

g.drawString("y=" +(new Integer(displayArea.y)).toStringO,
2, displayDimension.height - 2*textHeight);

g.drawString("y=" +(new Integer(displayArea.y+displayArea.height)).toStringO,
2,textHeight+3);

g.drawString("x=" +(new Integer(displayArea.x+displayArea.width)).toStringO,
displayDimension.width-textWidth-3,
displayDimension.height - textHeight);

//paint contact

if (parentContactGenerator.radarContacts.size()>0)
paintContactVector(g, parentContactGenerator.radarContacts, contactColor);

}//end of paintComponent

//==
//==

private void paintContactVector(Graphics g, Vector tmpVector, Color cColor) {

//This method paints a little "x" for every contact

g.setColor(cColor);

int b = 3;

for (int i=0;i<tmpVector.size();i++) {

Point contactC = (Point)tmpVector.get(i);
Point contactP = c2pix(contactC.x, contactC.y);

g.drawLine(contactP.x-b, contactP.y-b,contactP.x+b, contactP.y+b);
g.drawLine(contactP.x-b, contactP.y+b,contactP.x+b, contactP.y-b);

}

}//end of paintContactVector

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 186

private Point c2pix(int cX, int cY) {

//method to convert from "real" coordinate space
//to pixel coordinate space

int pX = 0;
int pY = 0;

//x-direction

double xFact = (cX-displayArea.getX())/ displayArea.getWidth();

pX = (new Float(displayDimension.width*xFact)).intValue();

//y-direction

double yFact = (cY-displayArea.getY())/ displayArea.getHeight();

pY = (new Float(displayDimension.height*(1 - yFact))).intValueO;

return new Point(pX.pY);

}//end of c2pix

}//end of class GeneratorPanel

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 187

D.3.3 The Class TacticDisplay.java

// /
//CMIF_HLA_Environment vl.OO, 7/2000 /

// " ', //This is part of a Master's Thesis at the /
//Center for Multisource Information Fusion /
//SUNY at Buffalo /

" ', //All rights reserved: /
//packages CMIFControlCenter, CMIFExperimentParticipant,/
// util
//packages hla.rtil3.javal
//packages Java, javax

CMIF, Kai Harth /
U.S. DoD /
Sun Microsystems /

// /

package DemoApplication;

import CMIF_HLA_Environment.CMIFExperimentParticipant;
import CMIF_HLA_Environment.CMIFControlCenter.*;
import CMIF_HLA_Environment.util.*;

import hla.rti13.javal.*;

import java.awt.*;
import java.awt.event.*;
import java.util.*;

import javax.swing.*;

//===
//===

public class TacticDisplay
extends CMIFExperimentParticipant

implements ActionListener

{

//This class implements a simple representation of a
//tactic display
//"Radar" information is received, displayed and exchanged with other
//tactic displays

DebugHelper D = new DebugHelperO ;

JFrame mainWindow;

TacticDisplayPanel displayPanel;

public Dimension displayDimension =
new Dimension(300, 200); //display in pixel

public Rectangle displayArea =
new Rectangle(0,0,30000,20000); //real area (in m) which is mapped to display

public Point radarLocation =
new Point (10000, 10000); //location of the radar sensor

public int radarRange = 7000; //radius of the radar reception

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 188

public Vector radarContacts = new VectorO;
public Vector reportedContacts = new VectorO;

JLabel timeLabel;

JButton clearButton;

JCheckBox broadcastCheckBox, receiveCheckBox;

//=^=========»»===^«^==^^==^~

public static void main(String argvD) {

TacticDisplay instance =
new TacticDisplay(argv);

)V/end of main

//==================================== =============
//===

public TacticDisplay (String [] argv) -[

//Constructor of the TacticDisplay Class
//
//l) Super class CMIFExperimentParticipant is instanciated
//2) Display Parameters are read from the command line input
//3) Remaining setup methods are called

super(argv[0]);

D.dbg0ut("Started TacticDisplay :" + argv[0]);

try {

displayArea =
new Rectangle((new Integer(argv[1])).intValueO,

(new Integer (argv [2])) .intValueO,
(new Integer(argv[3])).intValue(),
(new Integer(argv[4])).intValue()) ;

radarLocation = new Point ((new Integer(argv[5])).intValueO,
(new Integer (argv [6])) . intValueO) ;

radarRange = (new Integer(argv[7])).intValueO;

//map the displayArea (in m) to a reasonable screen represenation
//where the longest side of the display area is limited
//to dispMax

int dispMax = 400;

double dispRatio = displayArea.getWidthO/displayArea.getHeight();

D.dbgOut("Display Ratio: " + (new Double(dispRatio)).toStringO);
D.dbg0ut("Display Area: " + displayArea.toStringO);

if (dispRatio>=l) {

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 189

displayDimension.width = dispMax;
displayDimension.height = (new Double(dispMax/dispRatio)).intValueO;

y eise {

displayDimension.height = dispMax;
displayDimension.width = (new Double(dispMax*dispRatio)).intValue();

D.dbgOut(participantName + ": Setting pixel display to " +
displayDimension);

> catch (Exception e) {

D.dbgOut("Usage: ... <name> <xLL> <yLL> <Width> <Height> <radX> "+
"<radY> <radRange>");

D.dbgOut("#<xLL>, <yLL>: Location of the lower left corner of the "+
"display area (in m)");

D.dbgOut("#<Width>, <Height>: Width and Height of the display in m");
D.dbgOut("#<radX>, <radY>: Location of the radar sensor");
D.dbgOut("#<radRange>: Range of the radar sensor");

doSetupO;

createDisplayO;

waitForSimulationO;

startSimulationO;

}//end of constructor

//========

private void createDisplayO {

//This method initializes the display component for the
//tactical display

mainWindow = new JFrame(participantName);

//
//radar display

displayPanel = new TacticDisplayPanel(this);

JPanel centerPanel = new JPanelO;
centerPanel.setBorder(BorderFactory.createEmptyBorder(5,5,5,5));
centerPanel.add(displayPanel);

//
//simulation

JPanel simulationPanel = new JPanel(new GridLayout(l,0));

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 190

statelconLabel = new JLabel(orangelcon);
timeLabel = new JLabel('*~") ;
timeLabel.setForeground(Color.black);

simulationPanel.add(statelconLabel);
simulationPanel.add(new JLabeK" "));
simulationPanel.add(new JLabel("Time: "));
simulationPanel.add(timeLabel);
simulationPanel.setBorder(BorderFactory.createTitledBorder(lineBorder,

"Simulation"));

//communications

JPanel commPanel = new JPanel(new GridLayout(l,0));

broadcastCheckBox = new JCheckBox("Broadcast Contacts",true);
receiveCheckBox = new JCheckBox("Receive Contacts",true);

commPanel.add(broadcastCheckBox);
commPanel.add(receiveCheckBox);
commPanel.setBorder(BorderFactory.createTitledBorder(lineBorder,

"Communications"));

//
//clear button

clearButton = new JButton("Clear Display");
clearButton.addActionListener(this);

JPanel clearPanel = new JPanel();
clearPanel.add(clearButton);

//
//together

JPanel southPanel = new JPanel (new BorderLayoutO) ;
southPanel.setBorder(BorderFactory.createEmptyBorder(5,5,5,5));

southPanel.add(simulationPanel,BorderLayout.WEST);
southPanel.add(clearPanel.BorderLayout.SOUTH);
southPanel.add(commPanel,BorderLayout.EAST);

mainWindow.getContentPane().add(centerPanel, BorderLayout.CENTER);
mainWindow.getContentPaneO.add(southPanel, BorderLayout.SOUTH);

mainWindow.pack();
mainWindow.show();

}//end of createDisplay

private boolean evaluateRadarRange(Point contactPoint){

//This method tests for a given contactPoint if this
//point is within the radar range of this tactic display

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 191

double vecSq = (new Integer((contactPoint.x-radarLocation.x)*
(contactPoint.x-radarLocation.x) +
(contactPoint.y-radarLocation.y)*
(contactPoint.y-radarLocation.y))).doubleValue();

boolean withinRange =
(Math.sqrt(vecSq) < (new Double(radarRange)).intValue());

D.dbgOut("$#Contact has distance from radar: " +
(new Double(Math.sqrt(vecSq))).toStringO);

return withinRange;

}//end of evaluateRadarRange

//========
//========

//callbacks from the experiment participant

//=
//=

//=====
//=====

public void startSimulationO i

D.dbgOut(participantName + ": startSimulationO");

//statelconLabel.setlcon(greenlconPulse);
//statelconLabel.revalidateO;

updateStatelconLabelO;

while (simlsRunningO) {
t

displayPanel.repaint();

advanceOneStepO ;

}

}//end of startSimulation

//=
//=

public void receivedMessageOnBus(String sender,
String content) {

//This Method evaluates the incoming message which
//is either a "contact" or a "reported contact".
Ilk contact Point is generated and added to the corresponding
//contactVector.
//If it is an genuine contact, also the rebroadcast is issued

String delim = "#";

StringTokenizer messageTokenizer =
new StringTokenizer(content, delim);

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 192

String head = messageTokenizer.nextTokenO;
String xString = messageTokenizer.nextTokenO;
messageTokenizer.nextTokenO;
String yString = messageTokenizer.nextTokenO;

Double xC = new Double(xString);
Double yC = new Double(yString);

Point contactPoint = new Point (xC.intValue(), yC.intValue()) ;

if (head.startsWith("Contact")){

boolean isWithinRange = evaluateRadarRange(contactPoint);

if (isWithinRange) {

radarContacts.add(contactPoint);

if (broadcastCheckBox.isSelected())
sendMessageToBus("Reported"+content, "all");

}

}

if (head.startsWithO'Reported") && receiveCheckBox.isSelectedO)
reportedContacts.add(contactPoint);

>//end of receivedMessageOnBus

//===
//==
public void doneWithSetup() {

//This method is called after the federate is all set up,
//in contact with the ControlCenter and supplied with neccessary
//information for the simulation run

//...in this case, only the state icon is switched to green

updateStatelconLabelO;

}//end of doneWithSetup

//==
//==

public void abortSimulationO {

//This is a callback after the ControlCenter has sent
//the signal to abort the simulation

//...in this case, only the state icon is switched to red

updateStatelconLabelO;

>//end of startSimulation

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 193

//===
//===

public void doneWithSimulation(){

//This is the callback after the simulation is over (=reached
//upper time limit)

updateStatelconLabelO;

}//end of doneWithSimulation

public void doneWithShutDown(){

//This is the callback after the federation is successfully
//resigned

D.dbgOut(participantName + ": done with RTI shutdown, now exiting");

mainWindow.dispose();

System.exit(0);

}//end of doneWithShutDown

//===
//========== ==

public String reactToPingO
{

Ilk callback after receiving a ping request from the ControlCenter
//The string that has to be returned will be sent to the ControlCenter
//as a status message. Other activities can be implemented in
//overriding this in the participant implementation

String pingReactionString = new String(participantName +
" is reacting to PING");

return pingReactionString;

}//end of reactToPing

//================================== ===============
// ========================= ======================

public void timingParametersChangedO {

//This is a callback after the ControlCenter has sent
//timing information (start, stop, scale and increment).
//The internal processing is already done. This is to notify
//the implementation of the new situation.

timeLabel.setText(startTimeString);
timeLabel.revalidateO;

yIlend of timingParametersChanged

//===

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 194

//===

public void updateSimTime(double simTime) {

//This callback can be overriden to do something each time a new simulation
//time is set...

timeLabel.setText((new Double(simTime)).toStringO);

}//end of updateSimTime

//LISTENER
//

public void actionPerformed(ActionEvent event) {

String command = event.getActionCommandO;

D.dbgOut(participantName +" received: " + command);

if (command.equals("Clear Display")){

radarContacts.clear();
reportedContacts.clear();

displayPanel.repaint();
}

}//end of actionPerformed

37/end of class TacticDisplay

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 195

D.3.4 The Class TacticDisplayPanel.java

// /
//CMIF HLA.Environment vl.OO, 7/2000 /

// ', //This is part of a Master's Thesis at the /
//Center for Multisource Information Fusion /
//SUNY at Buffalo /
11 ', //All rights reserved: /
//packages CMIFControlCenter, CMIFExperimentParticipant,/
// util
//packages hla.rtil3.javal
//packages Java, javax

CMIF, Kai Harth /
U.S. DoD /
Sun Microsystems /

// /

package DemoApplication;

import CMIF_HLA_Environment.CMIFExperimentParticipant;
import CMIF_HLA_Environment.util.*;

import java.awt.*;
import j ava.awt.event.*;
import java.util.*;

import javax.swing.*;
import javax.swing.border.*;

//=
//=

public class TacticDisplayPanel
extends JPanel {

//This class implements the display painting functions
//needed for the TacticDisplay application

Dimension preferredSize = new Dimension(200, 200);

DebugHelper D = new DebugHelper(DebugHelper.FULL_DEBUG);

TacticDisplay parentTacticDisplay;

Border lineBorder = BorderFactory.createLineBorder(Color.black, 2);
Border emptyBorder = BorderFactory.createEmptyBorder(8,8,8,8);

Dimension displayDimension ; //display in pixel
Rectangle displayArea; //real area (in m) which is mapped to display
Point radarLocation; //location of the radar sensor
int radarRange; //radius of the radar reception

int gridDivisions = 5; //the smaller side of the display will be
//divided into this number of grid elements

float gridlncrement;

Color backgroundColor = new Color(0,102,102);
Color gridColor = new Color(0, 255, 50);

Color radarCircleColor = new Color(255, 255, 0);

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 196

Color contactColor = new Color(255, 0, 0);
Color repContactColor = Color.gray;

//=== ======================== :=== ==
//==:

public TacticDisplayPanel (TacticDisplay parent) {

//constructor

D.dbg0ut("Started Tactic Display Panel");

parentTacticDisplay = parent;

//get display dimensions from parent

displayDimension = parentTacticDisplay.displayDimension ;
displayArea = parentTacticDisplay.displayArea;
radarLocation = parentTacticDisplay.radarLocation;
radarRange = parentTacticDisplay.radarRange;

setBackground(backgroundColor);
setForeground(gridColor);

setBorder(lineBorder);

//determine grid parameters

int smallerSide;

if (displayDimension.height>displayDimension.width) {
smallerSide=displayDimension.width;

} else {
smallerSide=displayDimension.height;

}

gridlncrement= smallerSide/gridDivisions;

}//end of constructor

//=
//=

public Dimension getPreferredSizeO {

return displayDimension;

}

//=
//=

public void paintComponent(Graphics g) {

//This method overrides paintComponent in JPanel
//and does the actual painting work

super.paintComponent(g); //paint background

//paint grid

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 197

g.setColor(gridColor);

int nxG=l;

while ((new Float(nxG*gridIncrement)).intValueO <displayDimension.width){
g.drawLine((new Float(nxG*gridIncrement)).intValue(),0,

(new Float(nxG*gridlncrement)).intValue(),
displayDimension.height);

nxG++;
}

int nyG=l;

while ((new Float(nyG*gridlncrement)).intValueO <displayDimension.height){

g.drawLine(0,(new Float(nyG*gridIncrement)).intValueO,
displayDimension.width,
(new Float(nyG*gridIncrement)).intValue());

nyG++;

}

//paint axes

int textHeight=12;
int textWidth=55;

g.drawString("x=" +(new Integer(displayArea.x)).toStringO,
10,displayDimension.height - textHeight);

g.drawString("y=" +(new Integer(displayArea.y)).toStringO,
2, displayDimension.height - 2*textHeight);

g.drawString("y=" +(new Integer(displayArea.y+displayArea.height)).toStringO,
2,textHeight+3);

g.drawString("x=" +(new Integer(displayArea.x+displayArea.width)).toStringO,
displayDimension.width-textWidth-3,displayDimension.height -
textHeight);

//paint radar range

g.setColor(radarCircleColor);

Point radarCenter = c2pix(radarLocation.x, radarLocation.y);

g.fill0val(radarCenter.x-3, radarCenter.y-3, 6, 6);

Point radarUpperLeft = c2pix(radarLocation.x-radarRange,
radarLocation.y+radarRange);

Point radarLowerRight = c2pix(radarLocation.x+radarRange,
radarLocation.y-radarRange);

g.drawOval(radarUpperLeft.x, radarUpperLeft.y,
radarLowerRight.x-radarUpperLeft.x,
radarLowerRight.y-radarUpperLeft.y);

//paint contact

if (parentTacticDisplay.radarContacts.size()>0)
paintContactVector(g, parentTacticDisplay.radarContacts, contactColor);

if (parentTacticDisplay.reportedContacts.size()>0)

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 198

paintReportedContactVector(g, parentTacticDisplay.reportedContacts,
repContactColor);

}//end of paintComponent

//::::::::::::===::::::==================—================

private void paintContactVector(Graphics g, Vector tmpVector, Color cColor) {

//...paints a little "x" for every entry in the contact vector...

g.setColor(cColor);

int b = 3;

for (int i=0;i<tmpVector.size();i++) {

Point contactC = (Point)tmpVector.get(i);
Point contactP = c2pix(contactC.x, contactC.y);

g.drawLine(contactP.x-b, contactP.y-b,contactP.x+b, contactP.y+b);
g.drawLine(contactP.x-b, contactP.y+b.contactP.x+b, contactP.y-b);

}

}//end of paintContactVector

//== ==============
//===

private void paintReportedContactVector(Graphics g,
Vector tmpVector,
Color cColor) {

// paints a little "+" for every entry in the reported
//contacts vector

g.setColor(cColor);

int b = 3;

for (int i=0;i<tmpVector.size();i++) {

Point contactC = (Point)tmpVector.get(i);
Point contactP = c2pix(contactC.x, contactC.y);

g.drawLine(contactP.x, contactP.y-b,contactP.x, contactP.y+b);
g.drawLine(contactP.x-b, contactP.y,contactP.x+b, contactP.y);

}

}//end of paintReportedContactVector

//===

private Point c2pix(int cX, int cY) {

//method to convert from "real" coordinate space
//to pixel coordinate space

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 199

int pX = 0;
int pY = 0;

//x-direction

double xFact = (cX-displayArea.getX())/ displayArea.getWidth();

pX = (new Float(displayDimension.width*xFact)).intValueO;

//y-direction

double yFact = (cY-displayArea.getY())/ displayArea.getHeight();

pY = (new Float(displayDimension.height*(l - yFact))).intValue();

return new Point(pX.pY);

}//end of c2pix

}//end of class TacticDisplayPanel

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 200

D.4 The package util

D.4.1 The Class DebugHelper.java

// /
//CMIF_HLA_Environment vl.OO, 7/2000 /
// /
//This code is part of a Master's Thesis at the /
//Center for Multisource Information Fusion, /
//SUNY at Buffalo /
// /
//All rights reserved: /
//packages CMIFControlCenter, CMIFExperimentParticipant,/
// util
//packages hla.rtil3.javal
//packages Java, javax

CMIF, Kai Harth /
U.S. DoD /
Sun Microsystems /

// /

package CMIF_HLA_Environment.util;

//=
//=

public class DebugHelper

{
//The class DebugHelper facilitates the coordinated output
//of debug messages throughout the CMIF_HLA_Environment

public static int FULL_DEBUG = 1;
public static int LIGHT_DEBUG = 2;
public static int N0_DEBUG = 3;

int debugState;

//=
//=

public DebugHelper (){

debugState = LIGHT.DEBUG;

}//end of contructor

//==================::===:

public DebugHelper (int dState){

if ((dState>=LIGHT_DEBUG)|I(dState<=N0_DEBUG)) {

debugState = dState;

} else {

debugState = LIGHT_DEBUG;

}

}//end of contructor

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 201

//===========================—=======================
//==============—==—========================= =

public void dbgOut(String message) {

//This method writes the given message to System.err
//if the prefix matches the current debug state:
//- no prefix : display always if debug is on,
//- "$" prefix : display only when debug is FULL.DEBUG
//- "#" prefix : no separation lines in between

if (debugState!=NO_DEBUG) {

boolean fullDebugMessage = false;
boolean lineSeparation = true;

if (message.startsWith("$")) {

fullDebugMessage = true;
message = message.substring(l);

}

if (message.startsWith("#")) {

lineSeparation = false;
message = message.substring(l);

}

if ((debugState==LIGHT_DEBUG) &ft (IfullDebugMessage)) {

if (lineSeparation){
System, err. printlnC > ") ;
System.err.printlnC") ;

}

System.err.println(message);

} else {

if (lineSeparation){
System.err.printlnC ") ;
System.err.printlnC");

}

System.err.println(message);

}

}

}//end of dbgOutO

//===
// ==

public void setDebugState (int newdState) {

//This method allows to change the debugState during runtime

if ((newdState>=LIGHT_DEBUG)I I(newdState<=NO_DEBUG)) {

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 202

debugState = newdState;

}

}//end of setDebugStateQ

}//end of DebugHelper

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 203

D.4.2 The Class ExperimentFileHandler.java

// /
//CMIF HLA.Environment vl.00, 7/2000 /
11 ', //This is part of a Master's Thesis at the /
//Center for Multisource Information Fusion /
//SUNY at Buffalo /

//All rights reserved: /
//packages CMIFControlCenter, CMIFExperimentParticipant,/
// util
//packages hla.rtil3.javal
//packages Java, javax

CMIF, Kai Harth /
U.S. DoD /
Sun Microsystems /

// /

package CMIF_HLA_Environment.util;

import CMIF_HLA_Environment.CMIFControlCenter.*;

import javax.swing.*;
import java.io.*;
import j ava.awt.event.*;
import java.util.*;

//=
//=

public class ExperimentFileHandler

{

//The class ExperimentFileHandler performs the tasks of loading and saving
//files containing experiment setup data.
//
//Some features of the .cef file remain unused in this version but will be
//used later.
//
//In use right now: timing info, experiment ino and participants list

public static String fileEnding = ".cef"; //stands for CMIF Experiment File

//=
//=

public static void loadExperimentFile(CMIFExperimentManager manager) {

manager.D.dbgOut("$Method: ExperimentFileHandler.loadExperimentFile");

try {

String fileSeparator =
new String(System.getProperty("file.separator"));

String userDirectory =
new String(System.getProperty("user.dir") + fileSeparator);

JFileChooser fileChooser = new JFileChooser(userDirectory);

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 204

fileChooser.setFileFilter(new javax.swing.filechooser.FileFilter() {

public boolean accept(File f) {

boolean ace = false;

if (f .isDirectoryO)
ace = true;

if(f.getName().endsWith("cef"))
ace = true;

return ace;

public String getDescriptionO {

return new StringC'CMIF Experiment File");

}
);

int returnVal = fileChooser.
showOpenDialog(manager.parentCCenter.CCDisplay);

if (returnVal == JFileChooser.APPROVE.OPTION) {

File file = fileChooser.getSelectedFile();

FilelnputStream in = new
FileInputStream(file);

byte bt[] = new byte[(int)f ile.lengthO] ;
in.read(bt);
String contentString = new String(bt);
in.close();

analyzeFileContent(contentString, manager);

}

} catch (Exception e) {

manager.
parentCCenter.CCDisplay.messageOut("Loading failed: " + e.toStringO);

}

}//end of loadExperimentFile

//=
//=

public static void saveExperimentFile(CMIFExperimentManager manager) {

manager.D.dbgOut("$Method: ExperimentFileHandler.saveExperimentFile");

try {

String fileSeparator =
new String(System.getProperty("file.separator"));

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 205

String userDirectory =
new String(System.getProperty("user.dir") + fileSeparator);

String fileName =
new String(userDirectory + manager.experimentNameString +

fileEnding);
String title =
new String("Save Experiment Data");

JPanel messagePanel =
new JPanelO ;

messagePanel.setLayout(new BoxLayout(messagePanel,BoxLayout.Y_AXIS));

messagePanel.add(new JLabel("Save data to:"));
messagePanel. add (new JLabeKf ileName));

int returnlnt = JOptionPane.
showConf irmDialog((JFrame)manager.parentCCenter.CCDisplay,

messagePanel,
title,
JOptionPane.0K_CANCEL_0PTI0N,
JOptionPane.QUESTION_MESSAGE);

if (returnlnt==JOptionPane.0K_0PTI0N) {

manager.
parentCCenter.CCDisplay.messageOut("Saving...") ;

FileWriter experimentFileWriter =
new FileWriter(fileName);

experimentFileWriter.write("#=======================#\n")
experimentFileWriter.write("# CMIF_HLA_ENVIROMENT #\nn):
experimentFileWriter.write("# Experiment Data File #\n");
experimentFileWriter.write("#=======================#\n") :
experimentFileWriter.write("\n");
experimentFileWriter.write("«Generated File! Edit only if you know " +

"what you are doing \n");
experimentFileWriter.write("\n");
experimentFileWriter.write("# general info\n");
experimentFileWriter.write("\n");
experimentFileWriter.write(">>author{" +

manager.experimentAuthorString+"}\n");
experimentFileWriter.write("\n");
experimentFileWriter. write ("»name{" +

manager.experimentNameString +"}");
experimentFileWriter.write("\n");
experimentFileWriter.write(">>description{" +

manager.experimentDescriptionString +"}");
experimentFileWriter.write("\n\n");
experimentFileWriter.write("# time management\n");
experimentFileWriter.write("\n");
experimentFileWriter. write ("»start _time{" +

manager.startTimeString +"}\n");
experimentFileWriter.write("»end_time{" +

manager. endTimeString +"}\n");
experimentFileWriter. write ("»interval_time{" +

manager.intervalTimeString +"}\n");

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 206

experimentFileWriter.write(">>scale{" +
manager.scaleString +"}\n");

experimentFileWriter.write("\n\n");
experimentFileWriter.write("# participants\n");
experimentFileWriter.write("\n");

int participantsNum = manager.participantsToJoinVector.size();

experimentFileWriter.write(*,»participant_num{" +participantsNum +
"}\n");

for (int i=0; i< participantsNum; i++) {

String tmpString =

(String)manager.participantsToJoinVector.elementAt(i);

experimentFileWriter.write("»participant{" + (i+1) +", " +
tmpString +"}\n");

experimentFileWriter.write("\n\n");
experimentFileWriter.write("# channelsW) ;
experimentFileWriter.write("\n") ;

experimentFileWriter.close();

}

y catch (Exception e) {

manager.

parentCCenter.CCDisplay.messageOut("Saving failed: " + e.toStringO);

>

}//end of saveExperimentFile

private static void analyzeFileContent(String wholeFileString,
CMIFExperimentManager manager) {

//This method breaks down the string read from the experiment
//data file (at the "»" delimiters) , analyzes the information
//and puts it back in place for the experiment manager..

String delim = new StringO'»");

StringTokenizer wholeFileTokenizer =
new StringTokenizer(wholeFileString, delim);

Vector tmpVector = new VectorO;

//skip the file header
if (wholeFileTokenizer.hasMoreTokens()){
String dump = wholeFileTokenizer.nextTokenO;

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 207

}

while (wholeFileTokenizer.hasMoreTokensO) {

StringTokenizer segmentTokenizer =
new StringTokenizer(wholeFileTokenizer.nextTokenO,"{}");

if (segmentTokenizer.countTokens() >D {

String keyString = segmentTokenizer.nextToken();
String valueString = segmentTokenizer.nextTokenO;

if (keyString.equals("name")) {

manager.experimentNameString = valueString;
manager.experimentNameTF.setText(valueString);
manager.parentCCenter.CCDisplay.infoLabel.setText(valueString);

} else if (keyString.equals("description")) {

manager.experimentDescriptionString = valueString;
manager.experimentlnfoTA.setText(valueString);

} else if (keyString.equals("author")) {

manager.experimentAuthorString = valueString;
manager.experimentAuthorTF.setText(valueString);

} else if (keyString.equals("start„time")) {

manager.startTimeString = valueString;
manager.parentCCenter.CCDisplay.startTimeTF.setText(valueString);

} else if (keyString.equals("end_time")) {

manager.endTimeString = valueString;
manager.parentCCenter.CCDisplay.endTimeTF.setText(valueString);

} else if (keyString.equals("interval_time")) {

manager.intervalTimeString = valueString;
manager.parentCCenter.CCDisplay.intervalTF.setText(valueString);

y else if (keyString.equals("scale")) {

manager.scaleString = valueString;
manager.parentCCenter.CCDisplay.scaleTF.setText(valueString);

} else if (keyString.equals("participant_num")) {

manager.participantsToJoinVector.clear();
manager.participantsToJoinVector.

setSize((new Integer(valueString)).intValue());

manager.D.dbgOut("$#Setting capacity of vector to: " +
(new Integer(valueString)).intValue());

} else if (keyString.equals("participant")) {

StringTokenizer participantTokenizer =
new StringTokenizer(valueString,", ");

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 208

int posint = (new Integer(participantTokenizer.nextTokenO)).
intValueO;

String tmpString = participantTokenizer.nextToken();

manager.D.dbgOut("$#Setting #" + (poslnt-l) +" to " + tmpString);

manager.participantsToJoinVector.
setElementAt(tmpString, poslnt-l);

} eise {

manager.parentCCenter.
CCDisplay.messageOutC");

manager.parentCCenter.
CCDisplay.messageOut("An error occured while reading "+

"the data file!");
manager.parentCCenter.

CCDisplay.messageOutC'The file might be corrupted....");

manager.parentCCenter.
CCDisplay.messageOut(keyString + ", " + valueString);

}

}

}//end of while

manager.evaluateTimePanellnputs();

manager.participantsConfigList.setListData(manager.participantsToJoinVector);

manager.participantsConfigList.validateO;

manager.parentCCenter.cCenterState=CMIFControlCenter.SETUP.EXPERIMENT;
manager.parentCCenter.CCDisplay.setPhaselconsC'config", "grn_pulse");
manager.parentCCenter.CCDisplay.setPhaselcons("simulation", "red");
manager.parentCCenter.CCDisplay.setPhaselcons("rticleanup", "red");
manager.parentCCenter.CCDisplay.setPhaselcons("shutdown", "orange");

}//end of analyzeFileContentnt

};//end of ExperimeFileHandler

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 209

D.4.3 The Class SwingWorker.java

// /
//CMIF HLA_Environment vl.00, 7/2000 /
// /
//This is part of a Master's Thesis at the /
//Center for Multisource Information Fusion /
//SUNY at Buffalo /
// /
//All rights reserved: /
//packages CMIFControlCenter, CMIFExperimentPartic :ipant,/
// util : CMIF ', Kai Harth /
//packages hla.rtil3.javal : U.S. DoD /
//packages Java, javax : Sun Microsystems /
// /

//>» This class is adapted from the Java Tutorial at java.sun.com

package CMIF_HLA_Environment.util;

import javax.swing.SwingUtilities;

/**
* This is the 3rd version of SwingWorker (also known as
* SwingWorker 3), an abstract class that you subclass to
* perform GUI-related work in a dedicated thread. For
* instructions on using this class, see:
*
* http://java.sun.com/docs/books/tutorial/uiswing/misc/threads.html
*
* Note that the API changed slightly in the 3rd version:
* You must now invoke start() on the SwingWorker after
* creating it.
*/

//=
//=

public abstract class SwingWorker {

private Object value; // see getValueO, setValueO
private Thread thread;

/**
* Class to maintain reference to current worker thread
* under separate synchronization control.
*/

//=
//=

private static class ThreadVar {
private Thread thread;
ThreadVar(Thread t) { thread = t; }
synchronized Thread get() { return thread; }
synchronized void clear() { thread = null; }

}

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 210

private ThreadVar threadVar;

/**
* Get the value produced by the worker thread, or null if it
* hasn't been constructed yet.
*/

//===
//===

protected synchronized Object getValueO {
return value;

}

//===

/**
* Set the value produced by worker thread
*/

private synchronized void setValue(Object x) •{
value = x;

}

//===
//====================== ===============================

/**
* Compute the value to be returned by the <code>get</code> method.
*/

public abstract Object constructO;

//==—
//===—=========

/**
* Called on the event dispatching thread (not on the worker thread)
* after the <code>construct</code> method has returned.
*/

public void finished() {

}

//==== ========================= ==== ===============
//=== =

/**
* A new method that interrupts the worker thread. Call this method
* to force the worker to stop what it's doing.
*/

public void interrupt() {
Thread t = threadVar.get();
if (t != null) {
t.interruptO;

}
threadVar.clear();

}

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 211

//=

/**
* Return the value created by the <code>construct</code> method.
* Returns null if either the constructing thread or the current
* thread was interrupted before a value was produced.
*
* ©return the value created by the <code>construct</code> method
*/

public Object get() {
while (true) {

Thread t = threadVar.get();
if (t == null) {

return getValue();
}
try {

t. joinO;
}
catch (InterruptedException e) {

Thread.currentThread0.interrupt(); // propagate
return null;

}
}

}

//=
//=

/**
* Start a thread that will call the <code>construct</code> method
* and then exit.
*/

public SwingWorkerO {

final Runnable doFinished = new Runnable() {
public void run() { finishedO; }

>;

Runnable doConstruct = new Runnable() {
public void run() {

try {
setValue(construct());

}
finally {
threadVar.clear();

}

SwingUtilities.invokeLater(doFinished);
}

};

Thread t = new Thread(doConstruct);
threadVar = new ThreadVar(t);

}

APPENDIX D. SOURCECODES OF THE JAVA CLASSES 212

/**
* Start the worker thread.
*/

public void start(int priority) {
Thread t = threadVar.get();
if (t != null) {
t.setPriority(priority);
t.start();

}
>

public void start() {
Thread t = threadVar.get();
if (t != null) {
t.start();

>
>

}//end of SwingWorker

Bibliography

[CasOO] CASE-ATTI, A Testbed for Maritime Data Fusion (Technical Bulle-
tin). Defense Research Establishment Valcartier, Canada, 2000. http://-
www.drev.dnd.ca/tech/marinfus_e.html.

[DefOOa] DMSO Software Download Center, December 2000. http://sdc.dmso.mil.

[DefOOb] RTI 1.3-Next Generation Programmer's Guide Version 3.1. Defense Mod-
eling and Simulation Office, 2000. http://sdc.dmso.mil.

[DefOOc] RTI 1.3-NG Programmer's Guide Version 3.1,
Appendix B: Federate Ambassador. Defense Modeling and Simulation Office,
2000. http://sdc.dmso.mil.

[DefOOd] RTI 1.3-NG Programmer's Guide Version 3.1,
Appendix C: Classes and Suporting Types. Defense Modeling and Simulation
Office, 2000. http://sdc.dmso.mil.

[DefOOe] RTI 1.3-NG Programmer's Guide Version 3.1,
Appendix A: RTIAmbassador. Defense Modeling and Simulation Office,
2000. http://sdc.dmso.mil.

[DefOOf] RTI 1.3-NG Version 3.1, Installation Guide. Defense Modeling and Simu-
lation Office, 2000. http://sdc.dmso.mil.

[DefOOg] Website of the Defense Modeling and Simulation Office, December 2000.
http://www.dmso.mil.

[JavOOa] Java 2 Platform, "A Practical Guide for Programmers", Online version,
December 2000. http://java.sun.com/docs/books/tutorial.

[JavOOb] Java 2 Platform, Standard Edition, vl.2.2 API Specification, December
2000. http://java.sun.eom/products/jdk/l.2/docs/api/index.html.

213

BIBLIOGRAPHY 214

[JMP+99] Judith Dahmann, Mamie Salisbury, Phil Barry, et al. HLA and Beyond:
Interoperability Challenges . In Information & Security. An International
Journal, Vol. 3, pages 25-42, 1999.

[MK98] Mary Campione and Kathy Walrath. The Java Tutorial. Addison-Wesley,
New York, 1998.

[MK99] Mary Campione and Kathy Walrath. The JFC Swing Tutorial: A Guide to
Constructing GUIs. Addison-Wesley, New York, 1999.

[SDG98] SDG Standard Development Group. High Level Architecture Rules, Version
1.3. Defense Modeling and Simulation Office, 1998.

